Refine
Year of publication
Document Type
- Conference Proceeding (647) (remove)
Language
- English (486)
- German (159)
- Multiple languages (1)
- Russian (1)
Keywords
- Gamification (9)
- Kommunikation (9)
- Assistive Technology (8)
- Produktion (8)
- Ausbildung (7)
- Design (6)
- Deafblindness (5)
- Eingebettetes System (5)
- Energieversorgung (5)
- Heart rhythm model (5)
Institute
- Fakultät Elektrotechnik und Informationstechnik (E+I) (bis 03/2019) (246)
- Fakultät Maschinenbau und Verfahrenstechnik (M+V) (145)
- Fakultät Medien und Informationswesen (M+I) (104)
- Fakultät Betriebswirtschaft und Wirtschaftsingenieurwesen (B+W) (80)
- Fakultät Elektrotechnik, Medizintechnik und Informatik (EMI) (ab 04/2019) (70)
- ivESK - Institut für verlässliche Embedded Systems und Kommunikationselektronik (64)
- ACI - Affective and Cognitive Institute (32)
- INES - Institut für Energiesystemtechnik (25)
- IMLA - Institute for Machine Learning and Analytics (6)
- Zentrale Einrichtungen (6)
In cardiac resynchronization therapy (CRT) for heart failure, individualization of the AV delay is essential to improve hemodynamics and to minimize non-responder rate. In patients in sinus rhythm having additional disposition to bradycardia, optimization is necessary for both situations, atrial sensing and pacing. Therefore, echo-optimization is the goldstandard but time consuming. Unfortunately, it depends on the particular CRT systems parameter set if the resulting individually optimal AV delays can be programmed or not. Some CRT systems provide a set of AV delays for DDD operation combined with a set of the pace-sense-compensation to optimize the AV delay in DDD and VDD operation. The pace-sense-compensation (PSC) can be defined by the difference of implant-related interatrial conduction intervals in DDD and VDD operation measured in the esophageal left atrial electrogram. In a cohort of 96 CRT patients we found mean PSC of 59-35ms ranging between 0-143ms. As a consequence, allowing 10ms tolerance, AVD optimization is completely impossible in one of the two modes, VDD or DDD operation, in 34 (35%) or 5 (5%) patients with implants restricting the PSC range to 60ms or 100ms, respectively. Thus, we propose companies to provide CRT systems with programmable pace-sense- compensation between 0ms and 150ms.
Electrical velocimetry to optimize VV delay in biventricular VVIR and DDD pacing for heart failure
(2011)
Introduction: VV delay (VVD) is the only parameter to hemodynamically optimize cardiac resynchronization therapy (CRT) for patients with atrial fibrillation (AF). Electrical velocimetry (EV) has been established to monitor thoracic electrical conductivity and to calculate hemodynamic surrogate parameters. We compared the response of this method to hemodynamic parameter changes between CRT patients with sinus rhythm (SR) and patients with AF.
Methods: VVD was individualized in 17 CRT patients in SR (12m, 5f, 67.0±7.2yrs.) after echo AV delay optimization and in 11 CRT patients in AF (10m, 1f, 69.8±9.6yrs.) using the Aesculon Cardiovascular Monitor (Osypka Medical, Berlin, Germany). Serial 30s EV recordings were accomplished, decreasing the VVD stepwise by 10ms from +60ms to -60ms between right and left ventricular stimulus. Optimal VVD was determined by the maximum of at least two of the three averaged parameters stroke volume (SV), cardiac output (CO) and cardiac index (CI). The response of SV, CO and CI was tested comparing their values in optimal VVD and suboptimal VVD. Suboptimal VVD was defined by optimal VVD±20ms.
Results: In all 28 patients in SR and AF, EV recordings resulted in optimal VVD. Between suboptimal and optimal mean VVD of 18.6±30.8ms between left and right ventricular stimulus, SV increased by 7.2±6.8%, CO by 7.8±7.2% and CI by 10.0±13.3% (all p<0.02). In the SR group with VVD of 18.8± 29.6ms, SV increased by 4.6±2.9%, CO by 5.0±2.9% and CI by 4.9±2.9% (all p<0.02). In the AF group with VVD of 18.2±4.0ms, SV increased by 10.4±8.9%, CO by 11.3±9.5% and CI by 16.4±18.2% (all p<0.02). Significant differences were not found between optimal VVD in SR and AF patients.
Conclusion: EV is a feasible serial method to individualize VVD in DDD and VVIR pacing for heart failure. Its response to hemodynamic changes demonstrates the value of EV for VVD fine-tuning.
Responder-rate in cardiac resynchronization therapy (CRT) of patients in sinus rhythm (SR) or atrial fibrillation (AF) mainly depends on accurat selection, optimal position of the left ventricular electrode and individualization of hemodynamical parameters of the implanted biventricular pacing system during follow-up. High resolution esophageal left heart electrocardiography offers a quick and semi-invasive approach to the electrical activity of left atrium and left ventricle. It was used in 62 heart failure patients in sinus rhythm and 11 in atrial fibrillation after implantation of CRT systems to compare the semi-invasive interventricular conduction delay (IVCDE) with QRS width. In all of the patients, guideline decision for CRT was linked with IVCDE of about 40ms and up. From logical point of view, IVCDE provides the minimal target interval for the left ventricular electrode placement in order to exclude non-responders. Esophageal measurement of interatrial conduction intervals in VDD and DDD pacing was utilized to individualize the AV delay and to exclude adverse hemodynamic effects.
Significance of new electrocardiographic parameters to improve cardiac resynchronization therapy
(2011)
Introduction: Oesophageal left heart electrogram (LHE) is a valuable tool providing electrocardiographic parameters for cardiac resynchronization therapy (CRT). It can be utilized to measure left ventricular (LVCD) and intra-leftventricular conduction delays (ILVCD) in heart failure patients to justify implantation of CRT systems. In the follow-up, LHE enables measurement of implant-related interatrial conduction times (IACT) which are the key intervals defining the hemodynamically optimal AV delay (AVD).
Methods: By TOSlim oesophageal electrode and Rostockfilter (Osypka AG, Rheinfelden, Germany), LHE was recorded in 39 heart failure patients (10f, 29m, 65±8yrs., QRS=163±21ms) after implantation of CRT systems according to guidelines. In position of maximal left ventricular deflection, LVCD and ILVCD were measured and compared with QRS width. In position of maximal left atrial deflection (LA), IACT was determined in VDD and DDD operation as interval As-LA and Ap-LA between atrial sense event (As) or stimulus (Ap), resp., and onset of LA. AVD was individualized using SAV =As-LA + 50ms for VDD and PAV=Ap-LA + 50ms for DDD operation.
Results: The CRT patients were characterized by minimal transoesophageal LVCD of 40ms but 73±20ms, at mean, ILVCD of 90±24ms and QRS/LVCD ratio of 2.4±0.6. The measured As-LA of 39±24ms and Ap-LA of 124±26ms resulted into SAV of 89±24ms and PAV of 174±26ms. In case of empirical AVD programming using 120ms for SAV and 180ms for PAV, the LHE revealed inverse sequences of LA and Vp in 4 patients (10%) during VDD and 13 patients (33%) in DDD pacing. In these patients, Vp preceded LA as IACT exceeded the programmed AVD.
Conclusion: Guideline indication of CRT systems is associated with LVCD of 40ms or more. Therefore, individual LVCD offers the minimal target interval that should be reached during left ventricular electrode placement to increase responder rate. Postoperatively, AV delay optimization respecting implant-related IACTs excludes adverse hemodynamic effects.
Non-Esterified Plant Oils as Fuel -Engine Charakteristics, Emission and Mutagenic effects of PM-
(2009)
Plant oils may be used as a sustainable, nearly CO2 neutral fuel for diesel engines. This work investigates experimentally the particulate and gaseous emissions of diesel engines fuelled with non-esterified, pure plant oils with the quality standard of DIN V 51605 (Weihen-stephan RK-Qualitätsstandard 05/2000). The data are collected from three engines:
Common rail passenger car engine from OPEL AG
Truck engine from VOLVO
Truck engine from MAN AG
All engines have been correctly adjusted to plant oil operation.
The OPEL and VOLVO engines served for the basic investigations. The emissions of the MAN engine have been used to perform AMES tests to analyze possible health impacts of plant oil operation.
The experimental data show a reduction of particulate matter compared to traditional gasoil which may yield up to 50 % for. The particulate matter shows same primary particle sizes but the agglomerates as collected on TEM grids are different - the plant oil soot particles tend to form larger aggregates [4]. The gaseous emissions of CO and hydrocarbons HC are generally lower compared to the operation with gasoil. However, the NOX emissions are slightly higher. This may be contributed to the measured higher combustion chamber pressures and temperatures when fuelled by plant oils.
Emission samples have been extracted from ESC cycles of 13 step tests to perform the AMES test which give indication on carcinogen substances. The AMES test results gave no indication of mutagenic effects exceeding the detection limits. No significant differences could be found comparing the emissions of plant oil and gasoil operation. Thus, it can be stated that the emission from plant oil operation does not have a health impact different to traditional gas oil. This is in contrast to some other publications — a deeper insight shows that these investigations did not properly modify the engine for plant oils. It is mandatory to make the engine modification to pre-warm the plant oils to approx. 90°C prior to injection. The engine's warm-up phase needs special care to avoid any coking at the injection system and combustion chamber surfaces. The publications where a higher health risk was claimed to be found in the exhaust of plant oil fuels, did not pre-warm the plant oils — cold plant oils have been injected in the combustion chamber instead. This results in incomplete atomization and incomplete combustion with a lot of hazardous emission species (see also [4,11]. Such an operation will damage the engine after relatively short times and is, therefore, not realistic.
The investigated fuels had some influence on the engine characteristics. Higher temperatures and pressures in the cylinder have been detected for some plant oils compared to gasoil. This increase is explained by the higher oxygen content within the plant oils.
Vergleich der hämodynamischen Reaktion auf VV-Delay Änderungen bei Sinusrhythmus und Vorhofflimmern
(2010)
Introduction: Cardiac resynchronization therapy (CRT) with biventricular pacing (BV) is an established therapy for heart failure (HF) patients (P) with ventricular desynchronisation, but not all patients improved clinically. Aim of this study was to evaluate electrical intra-left ventricular conduction delay (LVCD) and interventricular conduction delay (IVCD), to better select patients for CRT.
Methods: 65 HF patients (age 63.4 ± 10.6 years; 7 females, 58 males) with New York Heart Association (NYHA) class 3 ± 0.2, 24.4 ± 6.7 % left ventricular (LV) ejection fraction and 167.4 ± 35.6 ms QRSD were included. Esophageal TO Osypka focused hemispherical electrodes catheter was perorally applied in position of maximum LV deflection to measure LVCD between onset and offset of LV deflection and IVCD between earliest onset of QRS in the 12-channel surface ECG and onset of LV deflection in the focused bipolar transesophageal LV electrogram.
Results: There were 50 responders with LVCD of 76.5 ± 20.4 ms, IVCD of 80.5 ± 26.1 ms (P=0.34) and QRSD of 171 ± 37.7 ms. 15 non-responders had longer LVCD of 90 ± 28.5 ms (P = 0.045), shorter IVCD of 50.1 ± 29.1 ms (P < 0.001) and QRSD of 155.3 ± 25 ms (P=0.14). During 21.3 ± 20.3 month BV pacing follow-up, the responder`s NYHA classes improved from 3 ± 0.2 to 2. ± 0.3 (P < 0.001) whereas the non-responders NYHA classes did not improve from 3 ± 0.2 to 2.9 ± 0.3 (P = 0.43) during 15.7 ± 13.9 month BV pacing follow-up (53 Boston, 10 Medtronic and 2 St. Jude CRT devices).
Conclusion: Determination of electrical LVCD and IVCD by focused bipolar transesophageal LV electrogram recording may be an additional useful technique to improve patient selection for CRT.
The paper focuses on a numerical model which describes the radial temperature evolution in an optical fiber during the heating and cooling process according to the SP1 approximation. Based on this model, experimental methods for temperature measurement with optical fibers and for splice process optimization can be developed.
New frontiers of supraventricular tachycardia and atrial flutter evaluation and catheter ablation
(2012)
Radiofrequency catheter ablation (RFCA) has revolutionized treatment for tachyarrhythmias and has become first-line therapy for some tachycardias. Although developed in the 1980s and widely applied in the 1990s, the technique is still in development. Transesophageal atrial pacing (TAP) can used for initiation and termination of supraventricular tachycardia (SVT).
Methods: The paroxysmal SVT include a wide spectrum of disorders including, in descending order of frequency, atrial flutter, atrioventricular (AV) nodal reentry, Wolff-Parkinson-White syndrome, and atrial tachycardia. While not life-threatening in most cases, they may cause important symptoms, such as palpitations, chest discomfort, breathlessness, anxiety, and syncope, which significantly impair quality of life. Medical therapy has variable efficacy, and most patients are not rendered free of symptoms. Research over the past several decades has revealed fundamental mechanisms involved in the initiation and maintenance of all of these arrhythmias. Knowledge of mechanisms has in turn led to highly effective surgical and catheter-based treatments. The supraventricular arrhythmias and their treatment are described in this report. SVT initiation was analysed with programmed TAP in 49 patients with palpitations (age 47 ± 17 years, 24 females, 25 males).
Results: In comparison to antiarrhythmic drug therapy the radiofrequency catheter ablation in patients suffering from atrial flutter, atrioventricular nodal reentry, atrioventricular reentry and atrial tachycardia is the better choice in most cases. TAP SVT initiation was possible in 23 patients before RFCA. Atrial cycle length of SVT was 320 ± 59 ms. We initiated AV nodal reentrant tachycardia (AVNRT, n=15), atrial tachycardia (AT, n=6) and AV reentrant tachycardia with Kent pathway conduction (AVRT, n=2) before RFCA.
Conclusions: Radiofrequency catheter ablation is a successful and safe method to cure most patients with paroxysmal supraventricular tachycardias. TAP allowed initiation and termination of SVT especially in outpatients.