Refine
Document Type
- Conference Proceeding (18)
- Article (reviewed) (7)
- Part of a Book (5)
- Article (unreviewed) (5)
- Other (1)
Keywords
- TRIZ (8)
- Innovation (5)
- Kreativität (3)
- Problemlösen (3)
- Produktentwicklung (3)
- TRIZ methodology (3)
- eco-innovation (3)
- Ecodesign (2)
- Process engineering (2)
- TRIZ Inventive Principles (2)
Process engineering (PE) focuses on the design, operation, control and optimization of chemical, physical and biological processes and has applications in many industries. Process intensification (PI) is the key development approach in the modern process engineering. The theory of inventive problem solving (TRIZ) is today considered as the most comprehensive and systematically organized invention knowledge and creative thinking methodology. This paper analyses the opportunities of TRIZ application in PE and especially in combination with PI. In this context the paper outlines the major challenges for TRIZ application in PE, conceptualizes a possible TRIZ-based approach for process intensification and problem solving in PE, and defines the corresponding research agenda. It also presents the results of the original empirical innovation research in the field of solid handling in the ceramic industry, demonstrates a method for identification and prediction of contradictions and introduces the concept of the probability of contradiction occurrence. Additionally, it describes a technique of process mapping that is based on the function and multi-screen analysis of the processes. This technique is illustrated by a case study dealing with granulation process. The research work presented in this paper is a part of the European project “Intensified by Design® platform for the intensification of processes involving solids handling”.
The research work analyses the relationship of 155 Process Intensification (PI) technologies to the components of the Theory of Inventive Problem Solving (TRIZ). It outlines TRIZ inventive principles frequently used in PI, and identifies opportunities for enhancing systematic innovation in process engineering by applying complementary TRIZ and PI. The study also proposes 70 additional inventive TRIZ sub-principles for the problems frequently encountered in process engineering, resulting in the advanced set of 160 inventive operators, assigned to the 40 TRIZ inventive principles. Finally, we analyse and discuss inventive principles used in 150 patent documents published in the last decade in the field of solid handling in the ceramic and pharmaceutical industries.
Using patent information for identification of new product features with high market potential
(2014)
Growing demands for cleaner production and higher eco-efficiency in process engineering require a comprehensive analysis of technical and environmental outcomes of customers and society. Moreover, unexpected additional technical or ecological drawbacks may appear as negative side effects of new environ-mentally friendly technologies. The paper conceptualizes a comprehensive ap-proach for analysis and ranking of engineering and ecological requirements in process engineering in order to anticipate secondary problems in eco-design and to avoid compromising the environmental or technological goals. For this purpose, the paper presents a method based on integration of the Quality Func-tion Deployment approach with the Importance-Satisfaction Analysis for the requirements ranking. The proposed method identifies and classifies compre-hensively the potential engineering and eco-engineering contradictions through analysis of correlations within requirements groups such as stakehold-er requirements (SRs) and technical requirements (TRs), and additionally through cross-relationship between SRs and TRs.
Environmentally-friendly implementation of new technologies and eco-innovative solutions often faces additional secondary ecological problems. On the other hand, existing biological systems show a lesser environmental impact as compared to the human-made products or technologies. The paper defines a research agenda for identification of underlying eco-inventive principles used in the natural systems created through evolution. Finally, the paper proposes a comprehensive method for capturing eco-innovation principles in biological systems in addition and complementary to the existing biomimetic methods and TRIZ methodology and illustrates it with an example.
Erfinderisches Problemlösen mit TRIZ : Zielbeschreibung, Problemdefinition und Lösungspriorisierung
(2017)
Die Theorie des erfinderischen Problemlösens, TRIZ, ist eine Systematik von Annahmen, Regeln, Methoden und Werkzeugen zur innovativen Systemverbesserung z.B. von Produkten, Prozessen, Dienstleistungen oder Organisationen. Diese Richtlinie erläutert TRIZ-Werkzeuge und -Methoden, die insbesondere in den Phasen "Zielbeschreibung", "Problemdefinition" und "Lösungspriorisierung" des Problemlösungsprozesses eingesetzt werden. Die Detailtiefe der Beschreibung erlaubt eine Einschätzung der Werkzeuge und Methoden hinsichtlich Einsatzzwecken, Ergebnissen und Funktionsweise. Die jeweilige Beschreibung der Methoden und Werkzeuge enthält konkrete Aussagen über Zielsetzung und Ergebnis ihres Einsatzes.