### Refine

#### Document Type

- Article (reviewed) (11) (remove)

#### Keywords

- Keilwelle (2)
- Schallwelle (2)
- Ultraschall (2)
- Akustik (1)
- Anisotropie (1)
- Elastische Welle (1)
- Elastizität (1)
- Finite element method (1)
- Guided waves (1)
- Keil (1)

Nonlinearity can give rise to intermodulation distortions in surface acoustic wave (SAW) devices operating at high input power levels. To understand such undesired effects, a finite element method (FEM) simulation model in combination with a perturbation theory is applied to find out the role of different materials and higher order nonlinear tensor data for the nonlinearities in such acoustic devices. At high power, the SAW devices containing metal, piezoelectric substrate, and temperature compensating (TC) layers are subject to complicated geometrical, material, and other nonlinearities. In this paper, third-order nonlinearities in TC-SAW devices are investigated. The materials used are LiNbO 3 -rot128YX as the substrate and copper electrodes covered with a SiO 2 film as the TC layer. An effective nonlinearity constant for a given system is determined by comparison of nonlinear P-matrix simulations to third-order intermodulation measurements of test filters in a first step. By employing these constants from different systems, i.e., different metallization ratios, in nonlinear periodic P-matrix simulations, a direct comparison to nonlinear periodic FEM-simulations yields scaling factors for the materials used. Thus, the contribution of the different materials to the nonlinear behavior of TC-SAW devices is obtained and the role of metal electrodes, substrate, and TC film are discussed in detail.

For an elastic medium containing a homogeneous distribution of micro-cracks, an effective one-dimensional stress-strain relation has been determined with finite element simulations. In addition to flat micro-cracks, voids were considered that contain a Hertzian contact, which represents an example for micro-cracks with internal structure. The orientation of both types of micro-cracks was fully aligned or, for flat micro-cracks, totally random. For micro-cracks with Hertzian contacts, the case of random orientation was treated in an approximate way. The two types of defects were found to give rise to different degrees of non-analytic behavior of the effective stress-strain relation, which governs the nonlinear propagation of symmetric (S0) Lamb waves in the long-wavelength limit. The presence of flat micro-cracks causes even harmonics to grow linearly with propagation distance with amplitudes proportional to the amplitude of the fundamental wave, and gives rise to a static strain. The presence of the second type of defects leads to a linear growth of all harmonics with amplitudes proportional to the power 3/2 of the fundamental amplitude, and to a strain-dependent velocity shift. Simple expressions are given for the growth rates of higher harmonics of S0 Lamb waves in terms of the parameters occurring in the effective stress-strain relation. They have partly been determined quantitatively with the help of the FEM results for different micro-crack concentrations.

Silicon edges as one-dimensional waveguides for dispersion-free and supersonic leaky wedge waves
(2012)

Acoustic waves guided by the cleaved edge of a Si(111) crystal were studied using a laser-based angle-tunable transducer for selectively launching isolated wedge or surface modes. A supersonic leaky wedge wave and the fundamental wedge wave were observed experimentally and confirmed theoretically. Coupling of the supersonic wave to shear waves is discussed, and its leakage into the surface acoustic wave was observed directly. The velocity and penetration depth of the wedge waves were determined by contact-free optical probing. Thus, a detailed experimental and theoretical study of linear one-dimensional guided modes in silicon is presented.

In numerical calculations, guided acoustic waves, localized in two spatial dimensions, have been shown to exist and their properties have been investigated in three different geometries, (i) a half-space consisting of two elastic media with a planar interface inclined to the common surface, (ii) a wedge made of two elastic media with a planar interface, and (iii) the free edge of an elastic layer between two quarter-spaces or two wedge-shaped pieces of a material with elastic properties and density differing from those of the intermediate layer.
For the special case of Poisson media forming systems (i) and (ii), the existence ranges of these 1D guided waves in parameter space have been determined and found to strongly depend on the inclination angle between surface and interface in case (i) and the wedge angle in case (ii). In a system of type (ii) made of two materials with strong acoustic mismatch and in systems of type (iii), leaky waves have been found with a high degree of spatial localization of the associated displacements, although the two materials constituting these structures are isotropic.
Both the fully guided and the leaky waves analyzed in this work could find applications in non-destructive evaluation of composite structures and should be accounted for in geophysical prospecting, for example.
A critical comparison is presented of the two computational approaches employed, namely a semi-analytical finite element scheme and a method based on an expansion of the displacement field in a double series of special functions.

The existence of acoustic waves with displacements localized at the tip of an isotropic elastic wedge was rigorously proven by Kamotskii, Zavorokhin and Nazarov. This proof, which is based on a variational approach, is extended to rectangular anisotropic wedges. For two high-symmetry configurations of rectangular edges in elastic media with tetragonal symmetry, a criterion is derived that allows identifying the boundary between the regions of existence for wedge modes of even and odd symmetry in regions of parameter space, where even- and odd-symmetry modes do not exist simultaneously. Furthermore, rectangular edges with non-equivalent surfaces are analyzed, and it is shown that at rectangular edges of cubic elastic media with one (110) surface and one (001) surface, a tip-localized guided wave always exists, apart from special cases that are characterized.

Laser pulses focused near the tip of an elastic wedge generate acoustic waves guided at its apex. The shapes of the acoustic wedge wave pulses depend on the energy and the profile of the exciting laser pulse and on the anisotropy of the elastic medium the wedge is made of. Expressions for the acoustic pulse shapes have been derived in terms of the modal displacement fields of wedge waves for laser excitation in the thermo-elastic regime and for excitation via a pressure pulse exerted on the surface. The physical quantity considered is the local inclination of a surface of the wedge, which is measured optically by laser-probe-beam deflection. Experimental results on pulse shapes in the thermo-elastic regime are presented and confirmed by numerical calculations. They pertain to an isotropic sharp-angle wedge with two wedge-wave branches and to a non-reciprocity phenomenon at rectangular silicon edges.