Refine
Document Type
- Article (reviewed) (2)
- Other (1)
Thermisch angetriebene (Adsorptions-)Kältemaschinen können mit einem verhältnismäßig geringen elektrischen Energieaufwand bzw. mit einer hohen elektrischen Leistungszahl Kälte bereitstel-len. Wird die zum Antrieb erforderliche Wärme aus industrieller Abwärme bereitgestellt, ist diese Kältebereitstellung energetisch effizienter als die Kältebereitstellung über eine Kompressionskäl-temaschine. Wird die Wärme jedoch in Kraft-Wärme-Kopplung bereitgestellt, ist die primärenergetische Bewertung sowohl von mehreren Teilwirkungsgraden als auch den Primärenergiefaktoren für den eingesetzten Brennstoff und die erzeugte bzw. bezogene elektrische Energie abhängig. Eine umfangreiche Messkampagne im Sommer 2018 liefert unter realitätsnahen Randbedingungen in einer Labor umgebung detaillierte Energiekennzahlen für einen typischen Tagesgang des Kältebedarfs. Damit gelingt es, Teilenergiekennwerte für die Planungspraxis abzuleiten und das Gesamtsystem energetisch mit einer konventionellen Kompressionskältemaschine zu vergleichen.
We present an electrochemical model of a lithium iron phosphate/graphite (LFP/C6) cell that includes combined aging mechanisms: (i) Electrochemical formation of the solid electrolyte interphase (SEI) at the anode, leading to loss of lithium inventory, (ii) breaking of the SEI due to volume changes of the graphite particles, causing accelerated SEI growth, and (iii) loss of active material due to of loss percolation of the liquid electrolyte resulting from electrode dry-out. The latter requires the introduction of an activity-saturation relationship. A time-upscaling methodology is developed that allows to simulate large time spans (thousands of operating hours). The combined modeling and simulation framework is able to predict calendaric and cyclic aging up to the end of life of the battery cells. The aging parameters are adjusted to match literature calendaric and cyclic aging experiments, resulting in quantitative agreement of simulated nonlinear capacity loss with experimental data. The model predicts and provides an interpretation for the dependence of capacity loss on temperature, cycling depth, and average SOC. The introduction of a percolation threshold in the activity-saturation relationship allows to capture the strong nonlinearity of aging toward end of life (“sudden death”).