Refine
Year of publication
Document Type
Keywords
- Ermüdung (9)
- Mikrostruktur (6)
- Plastizität (6)
- Stahl (5)
- Eisenguss (4)
- Thermomechanik (4)
- Finite-Elemente-Methode (3)
- Simulation (3)
- Grauguss (2)
- Gusseisen (2)
In this paper, the multiaxial formulation of a mechanism-based model for fatigue life prediction is presented whichcan be applied to low-cycle fatigue (LCF) and thermomechanical fatigue (TMF) problems in which high-cycle fa-tigue loadings are superimposed. The model assumes that crack growth is the lifetime limiting mechanism and thatthe crack advance in a loading cycleda/dNcorrelates with the cyclic crack-tip opening displacement ΔCTOD.The multiaxial formulation makes use of fracture mechanics solutions and thus, does not need additional modelparameters quantifying the effect of the multiaxiality. Furthermore, the model includes contributions of HCF on ΔCTODand assesses the effect of the direction of the HCF loadings with respect to LCF or TMF loadings inthe life prediction. The model is implemented into the finite-element program ABAQUS. It is applied to predictthe fatigue life of a thermomechanically loaded notched specimen that should represent the situation between theinlet and outlet bore holes of cylinder heads. A good correlation of the predicted and the measured fatigue lives isobtained.
A complete thermomechanical fatigue (TMF) life prediction methodology is developed for predicting the TMF life of cast iron cylinder heads for efficient heavy duty internal combustion engines. The methodology uses transient temperature fields as thermal loads for the non-linear structural finite-element analysis (FEA). To obtain reliable stress and strain histories in the FEA for cast iron materials, a time and temperature dependent plasticity model which accounts for viscous effects, non-linear kinematic hardening and tensioncompression asymmetry is required. For this purpose a unified elasto-viscoplastic Chaboche model coupled with damage is developed and implemented as a user material model (USERMAT) in the general purpose FEA program ANSYS. In addition, the mechanismbased DTMF model for TMF life prediction developed in Part I of the paper is extended to three-dimensional stress states under transient non-proportional loading conditions. The material properties of the plasticity model are determined for lamellar graphite cast iron GJL250 and vermicular graphite cast iron GJV450 from isothermal and non-isothermal uniaxial tests. The methodology is applied to obtain a TMF life prediction on two cast iron cylinder heads for heavy duty diesel engine applications made from both cast iron materials. It is shown that the life predictions using the developed methodology correlate very well with observed lives from two bench tests in terms of location as well as number of cycles to failure.
A crack opening stress equation for in-phase and out-of-phase thermomechanical fatigue loading
(2016)
In this paper, a crack opening stress equation for in-phase and out-of-phase thermomechanical fatigue (TMF) loading is proposed. The equation is derived from systematic calculations of the crack opening stress with a temperature dependent strip yield model for both plane stress and plane strain, different load ratios and different ratios of the temperature dependent yield stress in compression and tension. Using a load ratio scaled by the ratio of the yield stress in compression and tension, the equation accounts for the effect of the temperature dependent yield stress and the constraint on the crack opening stress. Based on the scaling relation established in this paper, Newman's crack opening stress equation for isothermal loading is enabled to predict the crack opening stress under TMF loading.
In this paper, the correlation of the cyclic J-integral, ΔJ, and the cyclic crack-tip opening displacement, ΔCTOD, is studied in the presence of crack closure to assess the question if ΔJ describes the crack-tip opening displacement in this case. To this end, a method is developed to evaluate ΔJ numerically within finite-element calculations. The method is validated for an elastic–plastic material that exhibits Masing behavior. Different strain ranges and strain ratios are considered under fully plastic cyclic conditions including crack closure. It is shown that the cyclic J-integral is the parameter to determine the cyclic crack-tip opening displacement even in cases where crack closure is present.
High temperature components in internal combustion engines and exhaust systems must withstand severe mechanical and thermal cyclic loads throughout their lifetime. The combination of thermal transients and mechanical load cycling results in a complex evolution of damage, leading to thermomechanical fatigue (TMF) of the material. Analytical tools are increasingly employed by designers and engineers for component durability assessment well before any hardware testing. The DTMF model for TMF life prediction, which assumes that micro-crack growth is the dominant damage mechanism, is capable of providing reliable predictions for a wide range of high-temperature components and materials in internal combustion engines. Thus far, the DTMF model has employed a local approach where surface stresses, strains, and temperatures are used to compute damage for estimating the number of cycles for a small initial defect or micro-crack to reach a critical length. In the presence of significant gradients of stresses, strains, and temperatures, the use of surface field values could lead to very conservative estimates of TMF life when compared with reported lives from hardware testing. As an approximation of gradient effects, a non-local approach of the DTMF model is applied. This approach considers through-thickness fields where the micro-crack growth law is integrated through the thickness considering these variable fields. With the help of software tools, this method is automated and applied to components with complex geometries and fields. It is shown, for the TMF life prediction of a turbocharger housing, that the gradient correction using the non-local approach leads to more realistic life predictions and can distinguish between surface cracks that may arrest or propagate through the thickness and lead to component failure.
HiSiMo cast irons are frequently used as material for high temperature components in engines as e.g. exhaust manifolds and turbo chargers. These components must withstand severe cyclic mechanical and thermal loads throughout their service life. The combination of thermal transients with mechanical load cycles results in a complex evolution of damage, leading to thermomechanical fatigue (TMF) of the material and, after a certain number of loading cycles, to failure of the component. In this paper (Part I), the low-cycle fatigue (LCF) and TMF properties of HiSiMo are investigated in uniaxial tests and the damage mechanisms are addressed. On the basis of the experimental results a fatigue life model is developed which is based on elastic, plastic and creep fracture mechanics results of short cracks, so that time and temperature dependent effects on damage are taken into account. The model can be used to estimate the fatigue life of components by means of finite-element calculations (Part II of the paper).
In this paper, an unconditionally stable algorithm for the numerical integration and finite-element implementation of a class of pressure dependent plasticity models with nonlinear isotropic and kinematic hardening is presented. Existing algorithms are improved in the sense that the number of equations to be solved iteratively is significantly reduced. This is achieved by exploitation of the structure of Armstrong-Frederik-type kinematic hardening laws. The consistent material tangent is derived analytically and compared to the numerically computed tangent in order to validate the implementation. The performance of the new algorithm is compared to an existing one that does not consider the possibility of reducing the number of unknowns to be iterated. The algorithm is used to implement a time and temperature dependent cast iron plasticity model, which is based on the pressure dependent Gurson model, in the finite-element program ABAQUS. The implementation is applied to compute stresses and strains in a large-scale finite-element model of a three cylinder engine block. This computation proofs the applicability of the algorithm in industrial practice that is of interest in applied sciences.
Bauteile in Dampfturbinen, stationäre Gasturbinen und Fluggasturbinen sind hohen Beanspruchungen ausgesetzt. Wenn die Turbinen gestartet werden, erwärmen sich die Bauteile im „heißen Bereich“ der Turbine auf über 1000 °C. Damit die Bauteile bei diesen Temperaturen nicht einfach dahinschmelzen, werden spezielle hochtemperaturfeste Legierungen verwendet, wie beispielsweise Nickelbasis-Superlegierungen. Die hohen Temperaturschwankungen die beim Starten und beim Abschalten der Turbine auftreten, machen aber auch diese Werkstoffe auf Dauer nicht mit. Beim Aufheizen dehnt sich das Material aus, beim Abkühlen zieht es sich wieder zusammen. Dieses Hin- und Her-Verformen führt dazu, dass der eingesetzte Werkstoff unter „Stress“ kommt und Spannungen im Werkstoff auftreten. Diese Spannungen können dazu führen, dass sich Risse im Material bilden, die unter der zyklischen Belastung (wiederholtes Starten und Abschalten) wachsen, bis das Bauteil kaputt ist. Der Fachmann spricht dabei von der thermo-mechanischen Ermüdung (Thermomechanical Fatigue, TMF) des Werkstoffs.
Cast aluminum alloys are frequently used as materials for cylinder head applications in internal combustion gasoline engines. These components must withstand severe cyclic mechanical and thermal loads throughout their lifetime. Reliable computational methods allow for accurate estimation of stresses, strains, and temperature fields and lead to more realistic Thermomechanical Fatigue (TMF) lifetime predictions. With accurate numerical methods, the components could be optimized via computer simulations and the number of required bench tests could be reduced significantly. These types of alloys are normally optimized for peak hardness from a quenched state that maximizes the strength of the material. However due to high temperature exposure, in service or under test conditions, the material would experience an over-ageing effect that leads to a significant reduction in the strength of the material. To numerically account for ageing effects, the Shercliff & Ashby ageing model is combined with a Chaboche-type viscoplasticity model available in the finite-element program ABAQUS by defining field variables. The constitutive model with ageing effects is correlated with uniaxial cyclic isothermal tests in the T6 state, the overaged state, as well as thermomechanical tests. On the other hand, the mechanism-based TMF damage model (DTMF) is calibrated for both T6 and over-aged state. Both the constitutive and the damage model are applied to a cylinder head component simulating several cycles on an engine dynamometer test. The effects of including ageing for both models are shown.