Refine
Document Type
Enrichmentconference_type
- Konferenzartikel (1)
Is part of the Bibliography
- yes (3)
Keywords
- Augmented Reality (1)
- Erweiterte Realität (1)
- pose estimation (1)
- surgical navigation (1)
- tracking (1)
Institute
- Fakultät Elektrotechnik, Medizintechnik und Informatik (EMI) (ab 04/2019) (3) (remove)
Open Access
- Open Access (2)
- Closed Access (1)
Das hier vorgestellte System verbindet das neue Konzept der Peer-to-Peer-Navigation mit dem Einsatz von Augmented Reality zur Unterstützung von bettseitig durchgeführten externen Ventrikeldrainagen. Das sehr kompakte und genaue Gesamtsystem beinhaltet einen Patiententracker mit integrierter Kamera, eine Augmented-Reality-Brille mit Kamera und eine Punktionsnadel bzw. einen Pointer mit zwei Trackern, mit dessen Hilfe die Anatomie des Patienten aufgenommen wird. Die exakte Position und Richtung der Punktionsnadel wird unter Zuhilfenahme der aufgenommenen Landmarken berechnet und über die Augmented-Reality-Brille für den Chirurgen sichtbar auf dem Patienten dargestellt. Die Methode zur Kalibrierung der statischen Transformationen zwischen Patiententracker und daran befestigter Kamera beziehungsweise zwischen den Trackern der Punktionsnadel sind für die Genauigkeit sehr wichtig und werden hier vorgestellt. Das Gesamtsystem konnte in vitro erfolgreich getestet werden und bestätigt den Nutzen eines Peer-to-Peer-Navigationssystems.
Purpose
This work presents a new monocular peer-to-peer tracking concept overcoming the distinction between tracking tools and tracked tools for optical navigation systems. A marker model concept based on marker triplets combined with a fast and robust algorithm for assigning image feature points to the corresponding markers of the tracker is introduced. Also included is a new and fast algorithm for pose estimation.
Methods
A peer-to-peer tracker consists of seven markers, which can be tracked by other peers, and one camera which is used to track the position and orientation of other peers. The special marker layout enables a fast and robust algorithm for assigning image feature points to the correct markers. The iterative pose estimation algorithm is based on point-to-line matching with Lagrange–Newton optimization and does not rely on initial guesses. Uniformly distributed quaternions in 4D (the vertices of a hexacosichora) are used as starting points and always provide the global minimum.
Results
Experiments have shown that the marker assignment algorithm robustly assigns image feature points to the correct markers even under challenging conditions. The pose estimation algorithm works fast, robustly and always finds the correct pose of the trackers. Image processing, marker assignment, and pose estimation for two trackers are handled in less than 18 ms on an Intel i7-6700 desktop computer at 3.4 GHz.
Conclusion
The new peer-to-peer tracking concept is a valuable approach to a decentralized navigation system that offers more freedom in the operating room while providing accurate, fast, and robust results.