Refine
Document Type
- Conference Proceeding (13)
- Part of a Book (4)
- Article (reviewed) (1)
Conference Type
- Konferenzartikel (13)
Language
- English (18)
Is part of the Bibliography
- yes (18)
Keywords
- TRIZ (4)
- eco-innovation (4)
- TRIZ Inventive Principles (3)
- Biomimetics (2)
- Chemical engineering (2)
- Eco-inventive principles (2)
- Ecodesign (2)
- Engineering Creativity (2)
- Kreativität (2)
- Process Design (2)
Institute
Open Access
- Closed Access (10)
- Open Access (6)
- Closed (2)
- Diamond (1)
Eco-innovations in chemical processes should be designed to use raw materials, energy and water as efficiently and economically as possible to avoid the generation of hazardous waste and to conserve raw material reserves. Applying inventive principles identified in natural systems to chemical process design can help avoid secondary problems. However, the selection of nature-inspired principles to improve technological or environmental problems is very time-consuming. In addition, it is necessary to match the strongest principles with the problems to be solved. Therefore, the research paper proposes a classification and assignment of nature-inspired inventive principles to eco-parameters, eco-engineering contradictions and eco-innovation domains, taking into account environmental, technological and economic requirements. This classification will help to identify suitable principles quickly and also to realize rapid innovation. In addition, to validate the proposed classification approach, the study is illustrated with the application of nature-inspired invention principles for the development of a sustainable process design for the extraction of high-purity silicon dioxide from pyrophyllite ores. Finally, the paper defines a future research agenda in the field of nature-inspired eco-engineering in the context of AI-assisted invention and innovation.
Environmentally-friendly implementation of new technologies and eco-innovative solutions often faces additional secondary ecological problems. On the other hand, existing biological systems show a lesser environmental impact as compared to the human-made products or technologies. The paper defines a research agenda for identification of underlying eco-inventive principles used in the natural systems created through evolution. Finally, the paper proposes a comprehensive method for capturing eco-innovation principles in biological systems in addition and complementary to the existing biomimetic methods and TRIZ methodology and illustrates it with an example.
Sustainable design of equipment for process intensification requires a comprehensive and correct identification of relevant stakeholder requirements, design problems and tasks crucial for innovation success. Combining the principles of the Quality Function Deployment with the Importance-Satisfaction Analysis and Contradiction Analysis of requirements gives an opportunity to define a proper process innovation strategy more reliably and to develop an optimal process intensification technology with less secondary engineering and ecological problems.
Economic growth and ecological problems have pushed industries to switch to eco-friendly technologies. However, environmental impact is still often neglected since production efficiency remains the main concern. Patent analysis in the field of process engineering shows that, on the one hand, some eco-issues appear as secondary problems of the new technologies, and on the other hand, eco-friendly solutions often show lower efficiency or performance capability. The study categorizes typical environmental problems and eco-contradictions in the field of process engineering involving solids handling and identifies underlying inventive principles that have a higher value for environmental innovation. Finally, 42 eco-innovation methods adapting TRIZ are chronologically presented and discussed.
Economic growth and ecological problems motivate industries to apply eco-friendly technologies and equipment. However, environmental impact, followed by energy and material consumption still remain the main negative implications of the technological progress in process engineering. Based on extensive patent analysis, this paper assigns more than 250 identified eco-innovation problems and requirements to 14 general eco-categories with energy consumption and losses, air pollution, and acidification as top issues. It defines primary eco-engineering contradictions, in case eco-problems appear as negative side effects of the new technologies, and secondary eco-engineering contradictions, if eco-friendly solutions have new environmental drawbacks. The study conceptualizes a correlation matrix between the eco-requirements for prediction of typical eco-contradictions on example of processes involving solids handling. Finally, it summarizes major eco-innovation approaches including Process Intensification in process engineering, and chronologically reviews 66 papers on eco-innovation adapting TRIZ methodology. Based on analysis of 100 eco-patents, 58 process intensification technologies, and literature, the study identifies 20 universal TRIZ inventive principles and sub-principles that have a higher value for environmental innovation.
Process engineering (PE) focuses on the design, operation, control and optimization of chemical, physical and biological processes and has applications in many industries. Process intensification (PI) is the key development approach in the modern process engineering. The theory of inventive problem solving (TRIZ) is today considered as the most comprehensive and systematically organized invention knowledge and creative thinking methodology. This paper analyses the opportunities of TRIZ application in PE and especially in combination with PI. In this context the paper outlines the major challenges for TRIZ application in PE, conceptualizes a possible TRIZ-based approach for process intensification and problem solving in PE, and defines the corresponding research agenda. It also presents the results of the original empirical innovation research in the field of solid handling in the ceramic industry, demonstrates a method for identification and prediction of contradictions and introduces the concept of the probability of contradiction occurrence. Additionally, it describes a technique of process mapping that is based on the function and multi-screen analysis of the processes. This technique is illustrated by a case study dealing with granulation process. The research work presented in this paper is a part of the European project “Intensified by Design® platform for the intensification of processes involving solids handling”.
The research work analyses the relationship of 155 Process Intensification (PI) technologies to the components of the Theory of Inventive Problem Solving (TRIZ). It outlines TRIZ inventive principles frequently used in PI, and identifies opportunities for enhancing systematic innovation in process engineering by applying complementary TRIZ and PI. The study also proposes 70 additional inventive TRIZ sub-principles for the problems frequently encountered in process engineering, resulting in the advanced set of 160 inventive operators, assigned to the 40 TRIZ inventive principles. Finally, we analyse and discuss inventive principles used in 150 patent documents published in the last decade in the field of solid handling in the ceramic and pharmaceutical industries.
Identification of Secondary Problems of New Technologies in Process Engineering by Patent Analysis
(2018)
The implementation of new technologies in production plants often causes negative side effects and drawbacks. In this context, the prediction of the secondary problems and risks can be used advantageously for selecting best solutions for intensification of the processes. The proposed method puts primary emphasis on systematic and fast anticipation of secondary problems using patent documents, and on extraction and prediction of possible engineering contradictions within novel technical systems. The approach comprises three ways to find secondary problems: (a) direct knowledge-based identification of secondary problems in new technologies or equipment; (b) identification of secondary problems of prototypes mentioned in patent citation trees; and (c) prediction of negative side effects using the correlation matrix for invention goals and secondary problems in a specific engineering domain.
In recent years, the application of TRIZ methodology in the process engineering has been found promising to develop comprehensive inventive solution concepts for process intensification (PI). However, the effectiveness of TRIZ for PI is not measured or estimated. The paper describes an approach to evaluate the efficiency of TRIZ application in process intensification by comparing six case studies in the field of chemical, pharmaceutical, ceramic, and mineral industries. In each case study, TRIZ workshops with the teams of researchers and engineers has been performed to analyze initial complex problem situation, to identify problems, to generate new ideas, and to create solution concepts. The analysis of the workshop outcomes estimates fulfilment of the PI-goals, impact of secondary problems, variety and efficiency of ideas and solution concepts. In addition to the observed positive effect of TRIZ application, the most effective inventive principles for process engineering have been identified.
As engineering graduates and specialists frequently lack the advanced skills and knowledge required to run eco-innovation systematically, the paper proposes a new teaching method and appropriate learning materials in the field of eco-innovation and evaluates the learning experience and outcomes. This programme is aimed at strengthening student’s skills and motivation to identify and creatively overcome secondary eco-contradictions in case if additional environmental problems appears as negative side effects of eco-friendly solutions.
Based on a literature analysis and own investigations, authors propose to introduce a manageable number of eco-innovation tools into a standard one-semester design course in process engineering with particular focus on the identification of eco-problems in existing technologies, selection of the appropriate new process intensification technologies (knowledge-based engineering), and systematic ideation and problem solving (knowledge-based innovation and invention).
The proposed educational approach equips students with the advanced knowledge, skills and competences in the field of eco-innovation. Analysis of the student’s work allows one to recommend simple-to-use tools for a fast application in process engineering, such as process mapping, database of eco-friendly process intensification technologies, and up to 20 strongest inventive operators for solving of environmental problems. For the majority of students in the survey, even the small workload has strengthened their self-confidence and skills in eco-innovation
Process engineering industries are now facing growing economic pressure and societies' demands to improve their production technologies and equipment, making them more efficient and environmentally friendly. However unexpected additional technical and ecological drawbacks may appear as negative side effects of the new environmentally-friendly technologies. Thus, in their efforts to intensify upstream and downstream processes, industrial companies require a systematic aid to avoid compromising of ecological impact. The paper conceptualises a comprehensive approach for eco-innovation and eco- design in process engineering. The approach combines the advantages of Process Intensification as Knowledge-Based Engineering (KBE), inventive tools of Knowledge-Based Innovation (KBI), and main principles and best-practices of Eco-Design and Sustainable Manufacturing. It includes a correlation matrix for identification of eco-engineering contradictions and a process mapping technique for problem definition, database of Process Intensification methods and equipment, as well as a set of strongest inventive operators for eco-ideation.
The 40 Altshuller Inventive Principles with numerous sub-principles remain over decades the most frequently applied tool of the Theory of Inventive Problem Solving TRIZ for systematic idea generation. However, their application often requires a concentrated, creative and abstract way of thinking that can be fairly challenging for the newcomers to TRIZ. This paper describes an approach to reduce the abstraction level of inventive sub-principles and presents the results of the idea generation experiment conducted with three groups of undergraduate and graduate students from different years of study in mechanical and process engineering. The students were asked to generate and to record their individual ideas for three design problems using a pre-defined set of classical and modified sub-principles within 10 minutes. The overall outcomes of the experiment support the assumption that the less abstract wording of the modified sub-principles leads to higher number of ideas. The distribution of ideas between the fields of MATCHEM-IBD (Mechanical, Acoustic, Thermal, Chemical, Electrical, Magnetic, Intermolecular, Biological and Data processing) differs significantly between groups using modified and abstract sub-principles.
Classification of TRIZ Inventive Principles and Sub-Principles for Process Engineering Problems
(2019)
The paper proposes a classification approach of 40 Inventive Principles with an extended set of 160 sub-principles for process engineering, based on a thorough analysis of 155 process intensification technologies, 200 patent documents, 6 industrial case studies applying TRIZ, and other sources. The authors define problem-specific sub-principles groups as a more precise and productive ideation technique, adaptable for a large diversity of problem situations, and finally, examine the anticipated variety of ideation using 160 sub-principles with the help of MATCEM-IBD fields.
Growing demands for cleaner production and higher eco-efficiency in process engineering require a comprehensive analysis of technical and environmental outcomes of customers and society. Moreover, unexpected additional technical or ecological drawbacks may appear as negative side effects of new environ-mentally friendly technologies. The paper conceptualizes a comprehensive ap-proach for analysis and ranking of engineering and ecological requirements in process engineering in order to anticipate secondary problems in eco-design and to avoid compromising the environmental or technological goals. For this purpose, the paper presents a method based on integration of the Quality Func-tion Deployment approach with the Importance-Satisfaction Analysis for the requirements ranking. The proposed method identifies and classifies compre-hensively the potential engineering and eco-engineering contradictions through analysis of correlations within requirements groups such as stakehold-er requirements (SRs) and technical requirements (TRs), and additionally through cross-relationship between SRs and TRs.
Eco-Feasibility Study and Application of Natural Inventive Principles in Chemical Engineering Design
(2022)
The early stages of the front-end process development are critical for the future success of projects involving new technologies. The application of eco-inventive principles identified in natural systems to the design of chemical processes and equipment allows one to find ways to mitigate or avoid secondary ecological problems such as, for example, higher consumption of raw materials or energy, generation of hazardous waste and pollution of the environment by toxic chemicals. However, before implementing a new technology in a real operational environment, it is necessary to completely investigate its undesirable ecological impact and to evaluate the future viability of this technology. Therefore, the research paper presents a study of ecological feasibility of an innovative process design utilising natural eco-inventive principles and analyses the correlations between applied inventive principles. Such eco-feasibility study can be considered as an important decision gate to determine whether the technology implementation should be moved forward. Furthermore, the study evaluates the practicability of natural inventive principles to the eco-friendly process design and is illustrated with an example of a sustainable technology for nickel extraction from pyrophyllite.
The increasing diffusion of rapidly developing AI technologies led to the idea of the experiment to combine TRIZ-based automated idea generation with the natural language processing tool ChatGPT, using the chatbot to interpret the automatically generated elementary solution principles. The article explores the opportunities and benefits of a novel AI-enhanced approach to teaching systematic innovation, analyses the learning experience, identifies the factors that affect students' innovation and problem-solving performance, and highlights the main difficulties students face, especially in interdisciplinary problems.
As engineering graduates and specialists frequently lack the advanced skills and knowledge required to run eco-innovation systematically, the paper proposes a new learning materials and educational tools in the field of eco-innovation and evaluates the learning experience and outcomes. This programme is aimed at strengthening student’s skills and motivation to identify and creatively overcome secondary eco-contradictions in case if additional environmental problems appear as negative side effects of eco-friendly solutions. The paper evaluates the efficiency of the proposed interdisciplinary tool for systematic eco-innovation including creative semi-automatic knowledge-based idea generation and concept development. It analyses the learning experience and identifies the factors that impact the eco-innovation performance of the students.
Sustainable chemical processes should be designed to combine the technological advantages and progress with lower safety risks and minimization of environmental impact such as, for example, reduction of raw materials, energy and water consumption, and avoidance of hazardous waste and pollution with toxic chemical agents. A number of novel eco-friendly chemical technologies have been developed in the recent decades with the help of the eco-innovations approaches and methods such as Life Cycle Analysis, Green Process Engineering, Process Intensification, Process Design for Sustainability, and others. An emerging approach to the sustainable process design in process engineering builds on the innovative solutions inspired from nature. However, the implementation of the eco-friendly technologies often faces secondary ecological problems. The study postulates that the eco-inventive principles identified in natural systems allow to avoid secondary eco-problems and proposes to apply these principles for sustainable design in chemical process engineering. The research work critically examines how this approach differs from the biomimetics, as it is commonly used for copying natural systems. The application of nature-inspired eco-design principles is illustrated with an example of a sustainable technology for extraction of nickel from pyrophyllite.