Refine
Document Type
Conference Type
- Konferenzartikel (2)
Language
- English (8)
Has Fulltext
- no (8)
Is part of the Bibliography
- yes (8)
Institute
Open Access
- Closed Access (6)
- Open Access (1)
Printed Electronics (PE) is a promising technology that provides mechanical flexibility and low-cost fabrication. These features make PE the key enabler for emerging applications, such as smart sensors, wearables, and Internet of Things (IoTs). Since these applications need secure communication and/or authentication, it is vital to utilize security primitives for cryptographic key and identification. Physical Unclonable Functions (PUF) have been adopted widely to provide the secure keys. In this work, we present a weak PUF based on Electrolyte-gated FETs using inorganic inkjet printed electronics. A comprehensive analysis framework including Monte Carlo simulations based on real device measurements is developed to evaluate the proposed PE-PUF. Moreover, a multi-bit PE-PUF design is proposed to optimize area usage. The analysis results show that the PE-PUF has ideal uniqueness, good reliability, and can operates at low voltage which is critical for low-power PE applications. In addition, the proposed multi-bit PE-PUF reduces the area usage around 30%.
Advances in printed electronics (PE) enables new applications, particularly in ultra-low-cost domains. However, achieving high-throughput printing processes and manufacturing yield is one of the major challenges in the large-scale integration of PE technology. In this article, we present a programmable printed circuit based on an efficient printed lookup table (pLUT) to address these challenges by combining the advantages of the high-throughput advanced printing and maskless point-of-use final configuration printing. We propose a novel pLUT design which is more efficient in PE realization compared to existing LUT designs. The proposed pLUT design is simulated, fabricated, and programmed as different logic functions with inkjet printed conductive ink to prove that it can realize digital circuit functionality with the use of programmability features. The measurements show that the fabricated LUT design is operable at 1 V.
Printed electronics (PE) enables disruptive applications in wearables, smart sensors, and healthcare since it provides mechanical flexibility, low cost, and on-demand fabrication. The progress in PE raises trust issues in the supply chain and vulnerability to reverse engineering (RE) attacks. Recently, RE attacks on PE circuits have been successfully performed, pointing out the need for countermeasures against RE, such as camouflaging. In this article, we propose a printed camouflaged logic cell that can be inserted into PE circuits to thwart RE. The proposed cell is based on three components achieved by changing the fabrication process that exploits the additive manufacturing feature of PE. These components are optically look-alike, while their electrical behaviors are different, functioning as a transistor, short, and open. The properties of the proposed cell and standard PE cells are compared in terms of voltage swing, delay, power consumption, and area. Moreover, the proposed camouflaged cell is fabricated and characterized to prove its functionality. Furthermore, numerous camouflaged components are fabricated, and their (in)distinguishability is assessed to validate their optical similarities based on the recent RE attacks on PE. The results show that the proposed cell is a promising candidate to be utilized in camouflaging PE circuits with negligible overhead.
Printed electronics (PE) circuits have several advantages over silicon counterparts for the applications where mechanical flexibility, extremely low-cost, large area, and custom fabrication are required. The custom (personalized) fabrication is a key feature of this technology, enabling customization per application, even in small quantities due to low-cost printing compared with lithography. However, the personalized and on-demand fabrication, the non-standard circuit design, and the limited number of printing layers with larger geometries compared with traditional silicon chip manufacturing open doors for new and unique reverse engineering (RE) schemes for this technology. In this paper, we present a robust RE methodology based on supervised machine learning, starting from image acquisition all the way to netlist extraction. The results show that the proposed RE methodology can reverse engineer the PE circuits with very limited manual effort and is robust against non-standard circuit design, customized layouts, and high variations resulting from the inherent properties of PE manufacturing processes.
Printed electrolyte-gated oxide electronics is an emerging electronic technology in the low voltage regime (≤1 V). Whereas in the past mainly dielectrics have been used for gating the transistors, many recent approaches employ the advantages of solution processable, solid polymer electrolytes, or ion gels that provide high gate capacitances produced by a Helmholtz double layer, allowing for low-voltage operation. Herein, with special focus on work performed at KIT recent advances in building electronic circuits based on indium oxide, n-type electrolyte-gated field-effect transistors (EGFETs) are reviewed. When integrated into ring oscillator circuits a digital performance ranging from 250 Hz at 1 V up to 1 kHz is achieved. Sequential circuits such as memory cells are also demonstrated. More complex circuits are feasible but remain challenging also because of the high variability of the printed devices. However, the device inherent variability can be even exploited in security circuits such as physically unclonable functions (PUFs), which output a reliable and unique, device specific, digital response signal. As an overall advantage of the technology all the presented circuits can operate at very low supply voltages (0.6 V), which is crucial for low-power printed electronics applications.
Printed electronics (PE) is a fast growing technology with promising applications in wearables, smart sensors and smart cards since it provides mechanical flexibility, low-cost, on-demand and customizable fabrication. To secure the operation of these applications, True Random Number Generators (TRNGs) are required to generate unpredictable bits for cryptographic functions and padding. However, since the additive fabrication process of PE circuits results in high intrinsic variation due to the random dispersion of the printed inks on the substrate, constructing a printed TRNG is challenging. In this paper, we exploit the additive customizable fabrication feature of inkjet printing to design a TRNG based on electrolyte-gated field effect transistors (EGFETs). The proposed memory-based TRNG circuit can operate at low voltages (≤ 1 V ), it is hence suitable for low-power applications. We also propose a flow which tunes the printed resistors of the TRNG circuit to mitigate the overall process variation of the TRNG so that the generated bits are mostly based on the random noise in the circuit, providing a true random behaviour. The results show that the overall process variation of the TRNGs is mitigated by 110 times, and the simulated TRNGs pass the National Institute of Standards and Technology Statistical Test Suite.
Printed electronics (PE) is a fast-growing field with promising applications in wearables, smart sensors, and smart cards, since it provides mechanical flexibility, and low-cost, on-demand, and customizable fabrication. To secure the operation of these applications, true random number generators (TRNGs) are required to generate unpredictable bits for cryptographic functions and padding. However, since the additive fabrication process of the PE circuits results in high intrinsic variations due to the random dispersion of the printed inks on the substrate, constructing a printed TRNG is challenging. In this article, we exploit the additive customizable fabrication feature of inkjet printing to design a TRNG based on electrolyte-gated field-effect transistors (EGFETs). We also propose a printed resistor tuning flow for the TRNG circuit to mitigate the overall process variation of the TRNG so that the generated bits are mostly based on the random noise in the circuit, providing a true random behavior. The simulation results show that the overall process variation of the TRNGs is mitigated by 110 times, and the generated bitstream of the tuned TRNGs passes the National Institute of Standards and Technology - Statistical Test Suite. For the proof of concept, the proposed TRNG circuit was fabricated and tuned. The characterization results of the tuned TRNGs prove that the TRNGs generate random bitstreams at the supply voltage of down to 0.5 V. Hence, the proposed TRNG design is suitable to secure low-power applications in this domain.