Refine
Document Type
- Article (reviewed) (5)
- Conference Proceeding (4)
- Doctoral Thesis (1)
Conference Type
- Konferenzartikel (4)
Language
- English (10)
Is part of the Bibliography
- yes (10)
Keywords
- printed electronics (3)
- Hybrid system (1)
- Internet of Things (1)
- IoT security (1)
- Physical unclonable function (1)
- Split-Manufacturing (1)
- analog physical unclonable function system (1)
- crossbar (1)
- fingerprinting (1)
- gedruckte Elektronik (1)
Institute
Open Access
- Closed Access (4)
- Open Access (4)
- Closed (1)
Hybrid low-voltage physical unclonable function based on inkjet-printed metal-oxide transistors
(2020)
Modern society is striving for digital connectivity that demands information security. As an emerging technology, printed electronics is a key enabler for novel device types with free form factors, customizability, and the potential for large-area fabrication while being seamlessly integrated into our everyday environment. At present, information security is mainly based on software algorithms that use pseudo random numbers. In this regard, hardware-intrinsic security primitives, such as physical unclonable functions, are very promising to provide inherent security features comparable to biometrical data. Device-specific, random intrinsic variations are exploited to generate unique secure identifiers. Here, we introduce a hybrid physical unclonable function, combining silicon and printed electronics technologies, based on metal oxide thin film devices. Our system exploits the inherent randomness of printed materials due to surface roughness, film morphology and the resulting electrical characteristics. The security primitive provides high intrinsic variation, is non-volatile, scalable and exhibits nearly ideal uniqueness.
Rectifiersare vital electronic circuits for signal and power conversion in various smart sensor applications. The ability to process low input voltage levels, for example, from vibrational energy harvesters is a major challenge with existing passive rectifiers in printed electronics, stemming mainly from the built-in potential of the diode's p-njunction. To address this problem, in this work, we design, fabricate, and characterize an inkjet-printed full-wave rectifier using diode-connected electrolyte-gated thin-film transistors (EGTs). Using both experimental and simulation approaches, we investigate how the rectifier can benefit from the near-zero threshold voltage of transistors, which can be enabled by proper channel geometry setting in EGT technology. The presented circuit can be operated at 1-V input voltage, featuring a remarkably small voltage loss of 140 mV and a cutoff frequency of ~300 Hz. Below the cutoff frequency, more than 2.6-μW dc power is obtained over the load resistances ranging from 5 to 20 kQ. Furthermore, experiments show that the circuit can work with an input amplitude down to 500 mV. This feature makes the presented design highly suitable for a variety of energy-harvesting applications.
Novel manufacturing technologies, such as printed electronics, may enable future applications for the Internet of Everything like large-area sensor devices, disposable security, and identification tags. Printed physically unclonable functions (PUFs) are promising candidates to be embedded as hardware security keys into lightweight identification devices. We investigate hybrid PUFs based on a printed PUF core. The statistics on the intra- and inter-hamming distance distributions indicate a performance suitable for identification purposes. Our evaluations are based on statistical simulations of the PUF core circuit and the thereof generated challenge-response pairs. The analysis shows that hardware-intrinsic security features can be realized with printed lightweight devices.
A Hybrid Optoelectronic Sensor Platform with an Integrated Solution‐Processed Organic Photodiode
(2021)
Hybrid systems, unifying printed electronics with silicon‐based technology, can be seen as a driving force for future sensor development. Especially interesting are sensing elements based on printed devices in combination with silicon‐based high‐performance electronics for data acquisition and communication. In this work, a hybrid system integrating a solution‐processed organic photodiode in a silicon‐based system environment, which enables flexible device measurement and application‐driven development, is presented. For performance evaluation of the integrated organic photodiode, the measurements are compared to a silicon‐based counterpart. Therefore, the steady state response of the hybrid system is presented. Promising application scenarios are described, where a solution‐processed organic photodiode is fully integrated in a silicon system.
A physical unclonable function (PUF) is a hardware circuit that produces a random sequence based on its manufacturing-induced intrinsic characteristics. In the past decade, silicon-based PUFs have been extensively studied as a security primitive for identification and authentication. The emerging field of printed electronics (PE) enables novel application fields in the scope of the Internet of Things (IoT) and smart sensors. In this paper, we design and evaluate a printed differential circuit PUF (DiffC-PUF). The simulation data are verified by Monte Carlo analysis. Our design is highly scalable while consisting of a low number of printed transistors. Furthermore, we investigate the best operating point by varying the PUF challenge configuration and analyzing the PUF security metrics in order to achieve high robustness. At the best operating point, the results show areliability of 98.37% and a uniqueness of 50.02%, respectively. This analysis also provides useful and comprehensive insights into the design of hybrid or fully printed PUF circuits. In addition, the proposed printed DiffC-PUF core has been fabricated with electrolyte-gated field-effect transistor technology to verify our design in hardware.
Embedded Analog Physical Unclonable Function System to Extract Reliable and Unique Security Keys
(2020)
Internet of Things (IoT) enabled devices have become more and more pervasive in our everyday lives. Examples include wearables transmitting and processing personal data and smart labels interacting with customers. Due to the sensitive data involved, these devices need to be protected against attackers. In this context, hardware-based security primitives such as Physical Unclonable Functions (PUFs) provide a powerful solution to secure interconnected devices. The main benefit of PUFs, in combination with traditional cryptographic methods, is that security keys are derived from the random intrinsic variations of the underlying core circuit. In this work, we present a holistic analog-based PUF evaluation platform, enabling direct access to a scalable design that can be customized to fit the application requirements in terms of the number of required keys and bit width. The proposed platform covers the full software and hardware implementations and allows for tracing the PUF response generation from the digital level back to the internal analog voltages that are directly involved in the response generation procedure. Our analysis is based on 30 fabricated PUF cores that we evaluated in terms of PUF security metrics and bit errors for various temperatures and biases. With an average reliability of 99.20% and a uniqueness of 48.84%, the proposed system shows values close to ideal.
Printed electronics, due to its manufacturability using printing technology, allows for fabrication on large areas and the usage of flexible substrates and thus enables novel applications. Non-impact printing technology, such as inkjet-printing, permits for flexible, decentralized manufacturing of electronic devices and systems. This further facilitates split-manufacturing in security-critical electrical components, as well as a maximum in design flexibility in terms of free form factors and non-standardized structures with different geometrical sizes, reaching from a few micrometers up to several millimeters.
Based on the technological benefits printed electronics offers, it provides an interesting counterpart to classical silicon-based electronics, which is usually densely integrated on miniaturized, rigid areas. By utilizing both technologies in a complementary manner, novel systems in the form of hybrid systems can be enabled. Whilst hybrid systems, incorporating passive printed components and electrically conductive wiring concepts, are already commercialized, complex printed systems, which also utilize active components remain rare. To enable more complex (hybrid) systems, various building blocks are required. This includes possibilities for lightweight, printed data storage, the capability to provide sustainable, self-powered printed components and especially circuits for secure, unique identification for holistic printed systems, deployed in the internet of things.
The presented thesis focuses on inkjet-printed electronic devices, circuits and hybrid systems. It investigates solutions for current scientific questions in the area of efficient data storage, sustainable electronics and hardware-based security in printed electronics.
For data storage, an inkjet-printed memristor is developed. The device is fully electrically evaluated with a focus on its data storage capabilities. Furthermore, the printed device is of special interest due to its easy manufacturability and integration capabilities. The experimental analysis reveals that the developed memristor is highly suitable as lightweight non-volatile memory device.
In order to enable sustainable electronic systems, an inkjet-printed full-wave rectifier based on near-zero threshold voltage electrolyte-gated transistors is developed and fully electrically characterized. The circuit is capable for small alternating voltage rectification of low-frequency vibration energy harvesters in the sub-volt region. This provides an important building block in enabling sustainable, self-powered electronic systems. The inkjet-printed full-wave rectifier is evaluated by electrical simulation and experimentally.
To tackle hardware-based security for printed electronics, two implementations for inkjet-printed physically unclonable functions are developed and presented. For unique identification, intrinsic variation in active printed devices are exploited. One implementation is based on a crossbar architecture, incorporating integrable electrolyte-gated transistor cells. The second implementation, the so-called differential circuit physically unclonable function, is based on inverter structures, which provide the basis for unique response generation. Both physically unclonable functions are evaluated using an electrical simulation-based approach and experimentally. The differential circuit approach is furthermore fully integrated within a silicon-based electronic platform environment and serves as intrinsic variation source in a hybrid system. The hybrid system physically unclonable function is fully verified regarding performance metrics and is capable to generate highly unique responses for secure identification.
Physically Unclonable Functions (PUFs) are hardware-based security primitives, which allow for inherent device fingerprinting. Therefore, intrinsic variation of imperfect manufactured systems is exploited to generate device-specific, unique identifiers. With printed electronics (PE) joining the internet of things (IoT), hardware-based security for novel PE-based systems is of increasing importance. Furthermore, PE offers the possibility for split-manufacturing, which mitigates the risk of PUF response readout by third parties, before commissioning. In this paper, we investigate a printed PUF core as intrinsic variation source for the generation of unique identifiers from a crossbar architecture. The printed crossbar PUF is verified by simulation of a 8×8-cells crossbar, which can be utilized to generate 32-bit wide identifiers. Further focus is on limiting factors regarding printed devices, such as increased parasitics, due to novel materials and required control logic specifications. The simulation results highlight, that the printed crossbar PUF is capable to generate close-to-ideal unique identifiers at the investigated feature size. As proof of concept a 2×2-cells printed crossbar PUF core is fabricated and electrically characterized.
Printed electronics can add value to existing products by providing new smart functionalities, such as sensing elements over large-areas on flexible or non-conformal surfaces. Here we present a hardware concept and prototype for a thinned ASIC integrated with an inkjet-printed temperature sensor alongside in-built additional security and unique identification features. The hybrid system exploits the advantages of inkjet-printable platinum-based sensors, physically unclonable function circuits and a fluorescent particle-based coating as a tamper protection layer.
Uncontrollable manufacturing variations in electrical hardware circuits can be exploited as Physical Unclonable Functions (PUFs). Herein, we present a Printed Electronics (PE)-based PUF system architecture. Our proposed Differential Circuit PUF (DiffC-PUF) is a hybrid system, combining silicon-based and PE-based electronic circuits. The novel approach of the DiffC-PUF architecture is to provide a specially designed real hardware system architecture, that enables the automatic readout of interchangeable printed DiffC-PUF core circuits. The silicon-based addressing and evaluation circuit supplies and controls the printed PUF core and ensures seamless integration into silicon-based smart systems. Major objectives of our work are interconnected applications for the Internet of Things (IoT).