Refine
Document Type
Is part of the Bibliography
- yes (6)
Keywords
- Diclofenac (2)
- Dünnschichtchromatographie (2)
- Ibuprofen (2)
- Benzodiazepine (1)
- Biolumineszenz (1)
- CCD-array (1)
- Diode-array HPTLC (1)
- Direkt-Glukose-Brennstoffzelle (1)
- Energiequelle Körper (1)
- Environment (1)
Institute
Open Access
- Closed Access (3)
- Open Access (3)
- Hybrid (1)
We present a video-densitometric quantification method for the pain killer known as diclofenac and ibuprofen. These non-steroidal anti-inflammatory drugs were separated on cyanopropyl bonded plates using CH2Cl2, methanol, cyclohexane (95+5+40, v/v) as mobile phase. The quantification is based on a bio-effective-linked analysis using vibrio fischeri bacteria. Within 10 minutes a CCD-camera registers the white light of the light-emitting bacteria. Diclofenac and ibuprofen effectively suppress the bacterial light emission which can be used for quantification within a linear range of 10 to 2000 ng. The detection limit for ibuprofen is 20 ng and the limit of quantification 26 ng per zone. Measurements were carried out using a 16-bit ST-1603ME CCD camera with 1.56 megapixels [from Santa Barbara Instrument Group, Inc., Santa Barbara, USA]. The range of linearity covers more than two magnitudes because the extended Kubelka-Munk expression is used for data transformation [1]. The separation method is inexpensive, fast and reliable. Ibuprofen is named after its chemical description: iso-butyl-propanoic phenolic acid. Both pain killers are world-widein use and both substances are stable in aqueous solution. Both substances are mainly excreted in the urine.
We present a video-densitometric quantification method for the pain killer known as diclofenac and ibuprofen. These non-steroidal anti-inflammatory drugs were separated on cyanopropyl bonded plates using CH2Cl2, methanol, cyclohexane (95 + 5 + 40, v/v) as mobile phase. The quantification is based on a bio-effective-linked analysis using Vibrio fisheri bacteria. Within 10 min a CCD-camera registered the white light of the light-emitting bacteria. Diclofenac and ibuprofen effectively suppressed the bacterial light emission which can be used for quantification within a linear range of 10 to 2000 ng. The detection limit for ibuprofen is 20 ng and the limit of quantification 26 ng per zone. Measurements were carried out using a 16-bit ST-1603ME CCD camera with 1.56 megapixels (from Santa Barbara Instrument Group, Inc., Santa Barbara, USA). The range of linearity covers more than two magnitudes because the extended Kubelka-Munk expression is used for data transformation. The separation method is inexpensive, fast, and reliable.
Diode-array planar chromatography is a versatile tool for identification of pharmaceutical substances In this paper thirty-three compounds with benzodiazepine properties were investigated and the separating conditions for silica gel HPTLC plates and three mobile phases were optimized. Diode-array HPTLC makes it possible to identify all the compounds with high certainty down to a level of 20 ng. An algorithm for spectral recognition which is combined with R F values from the three separation steps into one fit factor is presented. This set of data is unique for each of the compounds investigated and enables unequivocal identification. The method is rapid, inexpensive, and sensitive down to a level of 20 ng mL −1.
We present a video-densitometric quantification method in combination with diode-array quantification for the methyl-, ethyl-, propyl-, and butylparaben in cosmetics. These parabens were separated on cyanopropyl bonded plates using water-acetonitrile-dioxane-ethanol-NH3 (25%) (8:2:1:1:0.05, v/v) as mobile phase. The quantification is based on UV-measurements at 255 nm and a bioeffectively-linked analysis using Vibrio fischeri bacteria. Within 5 min, a Tidas S 700 diode-array scanner (J&M, Aalen, Germany) scans 8 tracks and thus measures in total 5600 spectra in the wavelengths range from 190 to 1000 nm. The quantification range for all these parabens is from 20 to 400 ng per band, measured at 255 nm. In the V. fischeri assay a CCD-camera registers the white light of the light-emitting bacteria within 10 min. All parabens effectively suppress the bacterial light emission which can be used for quantifying within a linear range from 100 to 400 ng. Measurements were carried out using a 16-bit MicroChemi chemiluminescence system (biostep GmbH, Jahnsdorf, Germany), using a CCD camera with 4.19 megapixels. The range of linearity is achieved because the extended Kubelka-Munk expression was used for data transformation. The separation method is inexpensive, fast, and reliable.
High-performance thin-layer chromatography (HPTLC), as the modern form of TLC (thin-layer chromatography), is suitable for detecting pharmaceutically active compounds over a wide polarity range using the gradient multiple development (GMD) technique. Diode-array detection (DAD) in conjunction with HPTLC can simultaneously acquire ultraviolet‒visible (UV‒VIS) and fluorescence spectra directly from the plate. Visualization as a contour plot helps to identify separated zones. An orange peel extract is used as an example to show how GMD‒DAD‒HPTLC in seven different developments with seven different solvents can provide an overview of the entire sample. More than 50 compounds in the extract can be separated on a 6-cm HPTLC plate. Such separations take place in the biologically inert stationary phase of HPTLC, making it a suitable method for effect-directed analysis (EDA). HPTLC‒EDA can even be performed with living organism, as confirmed by the use of Aliivibrio fischeri bacteria to detect bioluminescence as a measure of toxicity. The combining of gradient multiple development planar chromatography with diode-array detection and effect-directed analysis (GMD‒DAD‒HPTLC‒EDA) in conjunction with specific staining methods and time-of-flight mass spectrometry (TOF‒MS) will be the method of choice to find new chemical structures from plant extracts that can serve as the basic structure for new pharmaceutically active compounds.
BioPower
(2009)
Das Projekt BioPower ist eine Kooperation des Instituts für Angewandte Forschung (IAF) der Hochschule Offenburg mit dem Institut für Mikrosystemtechnik (IMTEK) der Universität Freiburg. Es handelt sich um den Versuch, die im Körper vorhandenen Energiequellen sozusagen direkt anzuzapfen, um sie für technische Zwecke zu nutzen. Von den vielen bestehenden Möglichkeiten konzentriert sich die Forschung hier auf die Nutzung der Glukose im Blut, die auch sonst als Energieträger zur Versorgung der Zellen im Körper dient.