Refine
Document Type
Conference Type
- Konferenzartikel (2)
Language
- English (2)
Has Fulltext
- no (2)
Is part of the Bibliography
- yes (2)
Institute
Open Access
- Closed Access (2)
Automotive service suppliers are keen to invent products that help to reduce particulate matter pollution substantial, but governance worldwide are not yet ready to introduce this retrofitting of helpful devices statutory. To develop a strategy how to introduce these devices to the market based on user needs is the objective of our research. The contribution of this paper is three-fold: we will provide an overview of the current options of particulate matter pollution solutions (I). This corpus is used to come to a more precise description of the specific needs and wishes of target groups (II). Finally, a representative empirical study via social media channels with German car owners will help to develop a strategy to introduce retrofit devices into the German market (III).
Transformer models have recently attracted much interest from computer vision researchers and have since been successfully employed for several problems traditionally addressed with convolutional neural networks. At the same time, image synthesis using generative adversarial networks (GANs) has drastically improved over the last few years. The recently proposed TransGAN is the first GAN using only transformer-based architectures and achieves competitive results when compared to convolutional GANs. However, since transformers are data-hungry architectures, TransGAN requires data augmentation, an auxiliary super-resolution task during training, and a masking prior to guide the self-attention mechanism. In this paper, we study the combination of a transformer-based generator and convolutional discriminator and successfully remove the need of the aforementioned required design choices. We evaluate our approach by conducting a benchmark of well-known CNN discriminators, ablate the size of the transformer-based generator, and show that combining both architectural elements into a hybrid model leads to better results. Furthermore, we investigate the frequency spectrum properties of generated images and observe that our model retains the benefits of an attention based generator.