Refine
Document Type
- Article (reviewed) (15)
- Article (unreviewed) (1)
Has Fulltext
- no (16)
Is part of the Bibliography
- yes (16)
Keywords
- Adsorption (11)
- Metallorganisches Netzwerk (6)
- Methan (5)
- Hochdruck (4)
- Kupfer (3)
- Aufreinigung (2)
- Kohlendioxid (2)
- Kohlenstoff (2)
- Molekularsieb (2)
- Wasserstoff (2)
Institute
Open Access
- Closed Access (11)
- Open Access (3)
Regarding the importance of adsorptive removal of carbon monoxide from hydrogen-rich mixtures for novel applications (e.g. fuel cells), this work provides a series of experimental data on adsorption isotherms and breakthrough curves of carbon monoxide. Three recently developed 5A zeolites and one commercial activated carbon were used as adsorbents. Isotherms were measured gravimetrically at temperatures of 278–313 K and pressures up to 0.85 MPa. Breakthrough curves of CO were obtained from dynamic column measurements at temperatures of 298–301 K, pressures ranging from 0.1 MPa to ca. 6 MPa and concentrations of CO in H2/CO mixtures of 5–17.5 mol%. A simple mathematical model was developed to simulate breakthrough curves on adsorbent beds using measured and calculated data as inputs. The number of parameters and the use of correlations to evaluate them were restricted in order to focus the importance of measured values. For the given assumptions and simplifications, the results show that the model predictions agree satisfactorily with the experimental data at the different operating conditions applied.
In this work the adsorption of CO2 and CH4 on a series of isoreticular microporous metal–organic frameworks based on 2-substituted imidazolate-4-amide-5-imidates, IFP-1–IFP-6 (IFP = Imidazolate Framework Potsdam), is studied firstly by pure gas adsorption at 273 K. All experimental isotherms can be nicely described by using the Tòth isotherm model and show the preferred adsorption of CO2 over CH4. At low pressures the Tòth isotherm equation exhibits a Henry region, wherefore Henry's law constants for CO2 and CH4 uptake could be determined and ideal selectivity αCO2/CH4 has been calculated. Secondly, selectivities were calculated from mixture data by using nearly equimolar binary mixtures of both gases by a volumetric–chromatographic method to examine the IFPs. Results showed the reliability of the selectivity calculation. Values of αCO2/CH4 around 7.5 for IFP-5 indicate that this material shows much better selectivities than IFP-1, IFP-2, IFP-3, IFP-4 and IFP-6 with slightly lower selectivity αCO2/CH4 = 4–6. The preferred adsorption of CO2 over CH4 especially of IFP-5 and IFP-4 makes these materials suitable for gas separation application.
An isomorphous series of 10 microporous copper-based metal–organic frameworks (MOFs) with the general formulas ∞3[{Cu3(μ3-OH)(X)}4{Cu2(H2O)2}3(H-R-trz-ia)12] (R = H, CH3, Ph; X2– = SO42–, SeO42–, 2 NO32– (1–8)) and ∞3[{Cu3(μ3-OH)(X)}8{Cu2(H2O)2}6(H-3py-trz-ia)24Cu6]X3 (R = 3py; X2– = SO42–, SeO42– (9, 10)) is presented together with the closely related compounds ∞3[Cu6(μ4-O)(μ3-OH)2(H-Metrz-ia)4][Cu(H2O)6](NO3)2·10H2O (11) and ∞3[Cu2(H-3py-trz-ia)2(H2O)3] (12Cu), which are obtained under similar reaction conditions. The porosity of the series of cubic MOFs with twf-d topology reaches up to 66%. While the diameters of the spherical pores remain unaffected, adsorption measurements show that the pore volume can be fine-tuned by the substituents of the triazolyl isophthalate ligand and choice of the respective copper salt, that is, copper sulfate, selenate, or nitrate.
As a basis for the evaluation of hydrogen storage by physisorption, adsorption isotherms of H2 were experimentally determined for several porous materials at 77 K and 298 K at pressures up to 15 MPa. Activated carbons and MOFs were studied as the most promising materials for this purpose. A noble focus was given on how to determine whether a material is feasible for hydrogen storage or not, dealing with an assessment method and the pitfalls and problems of determining the viability. For a quantitative evaluation of the feasibility of sorptive hydrogen storage in a general analysis, it is suggested to compare the stored amount in a theoretical tank filled with adsorbents to the amount of hydrogen stored in the same tank without adsorbents. According to our results, an “ideal” sorbent for hydrogen storage at 77 K is calculated to exhibit a specific surface area of >2580 m2 g−1 and a micropore volume of >1.58 cm3 g−1.
Pure gas adsorption isotherms of CH4 and N2 and their binary mixtures were measured at 273 K, 298 K and 323 K and up to 2 MPa on two different microporous metal–organic frameworks (MOFs), i.e. the commercially available Basolite® A100 and the recently reported copper-based triazolyl benzoate MOF 3∞[Cu(Me-4py-trz-ia)] (1). The Tòth isotherm model and the vacancy solution model were used to describe the experimentally determined isotherms and proved to be well suited for this purpose. While 1 shows a more homogeneous surface with a nearly constant isosteric heat of adsorption of 18–18.5 kJ mol−1 for CH4 and 12–15 kJ mol−1 for N2, the isosteric heat of adsorption at zero coverage for Basolite® A100 is 19 kJ mol−1 for CH4 and 16.2 kJ mol−1 for N2, decreasing significantly with increasing loading. Binary adsorption isotherms were measured gravimetrically to determine the total adsorbed mass of CH4 and N2. The van Ness method was successfully applied to calculate partial loadings from gravimetrically measured binary adsorption isotherms. Further studies by volumetric–chromatographic experiments support the good correlation between experimental data and predictions by the vacancy solution model (VSM-Wilson) and the ideal adsorbed solution theory (IAST) from pure gas isotherms. The experimental selectivities were determined to be αCH4/N2 = 4.0–5.0 for 1, slightly higher than for Basolite® A100 with αCH4/N2 = 3.4–4.5. These values are in good agreement with predictions for ideal selectivities based on Henry's law constants. From the experimental selectivities the potential of both MOFs in gas separation of CH4 from N2 can be derived.
The newly synthesized Zn4O-based MOF 3∞[Zn4(μ4-O){(Metrz-pba)2mPh}3]·8 DMF (1·8 DMF) of rare tungsten carbide (acs) topology exhibits a porosity of 43% and remarkably high thermal stability up to 430 °C. Single crystal X-ray structure analyses could be performed using as-synthesized as well as desolvated crystals. Besides the solvothermal synthesis of single crystals a scalable synthesis of microcrystalline material of the MOF is reported. Combined TG-MS and solid state NMR measurements reveal the presence of mobile DMF molecules in the pore system of the framework. Adsorption measurements confirm that the pore structure is fully accessible for nitrogen molecules at 77 K. The adsorptive pore volume of 0.41 cm3 g−1 correlates well with the pore volume of 0.43 cm3 g−1 estimated from the single crystal structure.
Pure component sorption isotherms of n-butane, isobutane, 1-butene and isobutene on the metal–organic framework (MOF) 3∞[Cu4(μ4-O)(μ2-OH)2(Me2trz-pba)4] at various temperatures between 283 K and 343 K and pressures up to 300 kPa are presented. The isotherms show a stepwise pore filling which is typical for structurally flexible materials with broad adsorption–desorption hysteresis loops. Gate opening pressures in their endemic characteristic depend on the used hydrocarbon gases. From all investigated gases only the isotherms of 1-butene present a second step at a relative pressure above p/p0 = 0.55. As a consequence, only 1-butene can fully open the framework resulting in a pore volume of 0.54 cm3 g−1. This result is in good agreement with the value of 0.59 cm3 g−1 calculated based on single crystal structure data. The isosteric heat of adsorption was calculated from the experimental isotherms for all C4-isomers. At low loadings the isosteric heat is in a narrow region between 41 and 49 kJ mol−1. Moreover, in situ XRD measurements at different relative hydrocarbon pressures were performed at 298 K for the C4-isomers. The differences in the pressure-depending powder diffraction patterns indicate phase transitions as a result of adsorption. Similar diffraction patterns were observed for all C4-hydrocarbons, except 1-butene, where the second step at higher relative pressure (p/p0 > 0.55) is accompanied by an additional phase transition. This powder pattern resembles that of the as-synthesized MOF material containing solvent molecules in the pore system. The resulting structural changes of the material during guest and pressure induced external stimuli are evidenced by the new coupled XRD adsorption equipment.