### Refine

#### Year of publication

#### Document Type

- Article (reviewed) (10)
- Conference Proceeding (8)
- Article (unreviewed) (4)
- Patent (2)
- Part of a Book (1)
- Other (1)

#### Keywords

- Ultraschall (4)
- Akustik (2)
- Finite-Elemente-Methode (2)
- Keilwelle (2)
- Oberfläche (2)
- Schallwelle (2)
- Anisotropie (1)
- Elastische Welle (1)
- Elastizität (1)
- Finite element method (1)

In the present work, nonlinearities in temperature
compensating (TC) SAW devices are investigated. The materials
used are LiNbO3-rot128YX as the substrate and Copper electrodes covered with a SiO2-layer as the compensating layer.
In order to understand the role of these materials for the
nonlinearities in such acoustic devices, a FEM simulation model
in combination with a perturbation approach [1] is applied.
The nonlinear tensor data of the different materials involved
in TC-SAW devices have been taken from literature, but were
partially modified to fit experimental data by introducing scaling factors. An effective nonlinearity constant is determined
by comparison of nonlinear P-matrix simulations to IMD3
measurements of test filters. By employing these constants in
nonlinear periodic P-matrix simulations a direct comparison to
nonlinear periodic FEM-simulations yields the scaling factors for
the material used. Thus, the contribution of different materials
to the nonlinear behavior of TC-SAW devices is obtained and
the role of metal electrodes is discussed in detail

Nonlinearity can give rise to intermodulation distortions in surface acoustic wave (SAW) devices operating at high input power levels. To understand such undesired effects, a finite element method (FEM) simulation model in combination with a perturbation theory is applied to find out the role of different materials and higher order nonlinear tensor data for the nonlinearities in such acoustic devices. At high power, the SAW devices containing metal, piezoelectric substrate, and temperature compensating (TC) layers are subject to complicated geometrical, material, and other nonlinearities. In this paper, third-order nonlinearities in TC-SAW devices are investigated. The materials used are LiNbO 3 -rot128YX as the substrate and copper electrodes covered with a SiO 2 film as the TC layer. An effective nonlinearity constant for a given system is determined by comparison of nonlinear P-matrix simulations to third-order intermodulation measurements of test filters in a first step. By employing these constants from different systems, i.e., different metallization ratios, in nonlinear periodic P-matrix simulations, a direct comparison to nonlinear periodic FEM-simulations yields scaling factors for the materials used. Thus, the contribution of the different materials to the nonlinear behavior of TC-SAW devices is obtained and the role of metal electrodes, substrate, and TC film are discussed in detail.

Existing ultrasonic stress evaluation methods utilize the acoustoelastic effect for bulk waves propagating in volume, which is unsuitable for a surface treated material, possessing a significant variation in material properties with depth. With knowledge of nonlinear elastic parameters – third-order elastic constants (TOEC) close to the surface of the sample, the acoustoelastic effect might be used with surface acoustic waves. This work is focused on the development of an independent method of TOEC measurement using the effect of nonlinear surface acoustic waves scattering – i.e. the effect of elastic waves interaction in a nonlinear medium.
In this paper, the possible three wave interactions of surface guided waves and bulk waves are described and formulae for the efficiency of harmonic generation and mode mixing are derived. A comparison of the efficiency of surface waves scattering in an isotropic medium for different interaction types is carried out with the help of nonlinear perturbation theory. First results for surface and bulk wave mixing with known second- and third-order elastic constants are shown.

Silicon edges as one-dimensional waveguides for dispersion-free and supersonic leaky wedge waves
(2012)

Acoustic waves guided by the cleaved edge of a Si(111) crystal were studied using a laser-based angle-tunable transducer for selectively launching isolated wedge or surface modes. A supersonic leaky wedge wave and the fundamental wedge wave were observed experimentally and confirmed theoretically. Coupling of the supersonic wave to shear waves is discussed, and its leakage into the surface acoustic wave was observed directly. The velocity and penetration depth of the wedge waves were determined by contact-free optical probing. Thus, a detailed experimental and theoretical study of linear one-dimensional guided modes in silicon is presented.

A theoretical description is given for the propagation of surface acoustic wave pulses in anisotropic elastic media subject to the influence of nonlinearity. On the basis of nonlinear elasticity theory, an evolution equation is presented for the surface slope or the longitudinal surface velocity associated with an acoustic pulse. It contains a non-local nonlinearity, characterized by a kernel that strongly varies from one propagation geometry to another due to the anisotropy of the substrate. It governs pulse shape evolution in homogeneous halfspaces and the shapes of solitary surface pulses that exist in coated substrates. The theory describing nonlinear Rayleigh-type surface acoustic waves is extended in a straightforward way to surface waves that are localized at a one-dimensional acoustic waveguide like elastic wedges.

Surface and interface acoustic waves are two-dimensionally guided waves, as their displacement field is plane-wave like regarding its dependence on the spatial coordinates parallel to the guiding plane, while it decays exponentially along the axis normal to that plane. When propagating at the planar surface or interface of homogeneous media, they are non-dispersive. Another type of non-dispersive acoustic waves which is, however, one-dimensionally guided, has displacement fields localized near the apex of a wedge made of an elastic material. In this short review, their propagation properties are described as well as theoretical and experimental methods which have been used for their analysis. Experimental findings are discussed in comparison with corresponding theoretical work and potential applications of this fascinating type of acoustic waves are presented.

In a recent paper it has been shown that the effective nonlinear constant which is used in a P-Matrix approach to describe third-order intermodulation (IMD3) in surface acoustic wave (SAW) devices can be obtained from finite element (FEM) calculations of a periodic cell using nonlinear tensor data [1]. In this paper we extend this FEM calculation and show that the IMD3 of an infinite periodic array of electrodes on a piezoelectric substrate can be directly simulated in the sagittal plane. This direct approach opens the way for a FEM based simulation of nonlinearities for finite and generalized structures avoiding the simplifications of phenomenological approaches.