### Refine

#### Year of publication

#### Document Type

- Article (reviewed) (11)
- Conference Proceeding (10)
- Article (unreviewed) (4)
- Patent (2)
- Part of a Book (1)
- Contribution to a Periodical (1)
- Other (1)

#### Keywords

- Ultraschall (4)
- Akustik (2)
- Finite-Elemente-Methode (2)
- Keilwelle (2)
- Oberfläche (2)
- Schallwelle (2)
- Anisotropie (1)
- Elastische Welle (1)
- Elastizität (1)
- Finite element method (1)

In numerical calculations, guided acoustic waves, localized in two spatial dimensions, have been shown to exist and their properties have been investigated in three different geometries, (i) a half-space consisting of two elastic media with a planar interface inclined to the common surface, (ii) a wedge made of two elastic media with a planar interface, and (iii) the free edge of an elastic layer between two quarter-spaces or two wedge-shaped pieces of a material with elastic properties and density differing from those of the intermediate layer.
For the special case of Poisson media forming systems (i) and (ii), the existence ranges of these 1D guided waves in parameter space have been determined and found to strongly depend on the inclination angle between surface and interface in case (i) and the wedge angle in case (ii). In a system of type (ii) made of two materials with strong acoustic mismatch and in systems of type (iii), leaky waves have been found with a high degree of spatial localization of the associated displacements, although the two materials constituting these structures are isotropic.
Both the fully guided and the leaky waves analyzed in this work could find applications in non-destructive evaluation of composite structures and should be accounted for in geophysical prospecting, for example.
A critical comparison is presented of the two computational approaches employed, namely a semi-analytical finite element scheme and a method based on an expansion of the displacement field in a double series of special functions.

Nonlinearity can give rise to intermodulation distortions in surface acoustic wave (SAW) devices operating at high input power levels. To understand such undesired effects, a finite element method (FEM) simulation model in combination with a perturbation theory is applied to find out the role of different materials and higher order nonlinear tensor data for the nonlinearities in such acoustic devices. At high power, the SAW devices containing metal, piezoelectric substrate, and temperature compensating (TC) layers are subject to complicated geometrical, material, and other nonlinearities. In this paper, third-order nonlinearities in TC-SAW devices are investigated. The materials used are LiNbO 3 -rot128YX as the substrate and copper electrodes covered with a SiO 2 film as the TC layer. An effective nonlinearity constant for a given system is determined by comparison of nonlinear P-matrix simulations to third-order intermodulation measurements of test filters in a first step. By employing these constants from different systems, i.e., different metallization ratios, in nonlinear periodic P-matrix simulations, a direct comparison to nonlinear periodic FEM-simulations yields scaling factors for the materials used. Thus, the contribution of the different materials to the nonlinear behavior of TC-SAW devices is obtained and the role of metal electrodes, substrate, and TC film are discussed in detail.

For an elastic medium containing a homogeneous distribution of micro-cracks, an effective one-dimensional stress-strain relation has been determined with finite element simulations. In addition to flat micro-cracks, voids were considered that contain a Hertzian contact, which represents an example for micro-cracks with internal structure. The orientation of both types of micro-cracks was fully aligned or, for flat micro-cracks, totally random. For micro-cracks with Hertzian contacts, the case of random orientation was treated in an approximate way. The two types of defects were found to give rise to different degrees of non-analytic behavior of the effective stress-strain relation, which governs the nonlinear propagation of symmetric (S0) Lamb waves in the long-wavelength limit. The presence of flat micro-cracks causes even harmonics to grow linearly with propagation distance with amplitudes proportional to the amplitude of the fundamental wave, and gives rise to a static strain. The presence of the second type of defects leads to a linear growth of all harmonics with amplitudes proportional to the power 3/2 of the fundamental amplitude, and to a strain-dependent velocity shift. Simple expressions are given for the growth rates of higher harmonics of S0 Lamb waves in terms of the parameters occurring in the effective stress-strain relation. They have partly been determined quantitatively with the help of the FEM results for different micro-crack concentrations.

Existing ultrasonic stress evaluation methods utilize the acoustoelastic effect for bulk waves propagating in volume, which is unsuitable for a surface treated material, possessing a significant variation in material properties with depth. With knowledge of nonlinear elastic parameters – third-order elastic constants (TOEC) close to the surface of the sample, the acoustoelastic effect might be used with surface acoustic waves. This work is focused on the development of an independent method of TOEC measurement using the effect of nonlinear surface acoustic waves scattering – i.e. the effect of elastic waves interaction in a nonlinear medium.
In this paper, the possible three wave interactions of surface guided waves and bulk waves are described and formulae for the efficiency of harmonic generation and mode mixing are derived. A comparison of the efficiency of surface waves scattering in an isotropic medium for different interaction types is carried out with the help of nonlinear perturbation theory. First results for surface and bulk wave mixing with known second- and third-order elastic constants are shown.

In a SAW device comprises a SAW chip bearing a SAW transducer arranged within a first signal line parasitic signals due to higher harmonics of the operating frequency of the SAW devices are electrically eliminated by compensating means comprising at least one second signal line having means for producing a cancelling signal different in sign or phase to the parasitic signal, or a shunt line to electrically connect the SAW transducer to a back side metallization of the SAW chip.

In einer SAW-Vorrichtung, welche einen SAW-Chip umfasst, der einen SAW-Wandler aufweist, welcher innerhalb einer ersten Signalleitung angeordnet ist, werden Parasitärsignale infolge höherer Harmonischer der Betriebsfrequenz der SAW-Vorrichtungen durch Kompensationsmittel elektrisch beseitigt, welche zumindest eine zweite Signalleitung mit Mitteln zum Erzeugen eines Aufhebungssignals, das im Vorzeichen oder in der Phase vom Parasitärsignal verschieden ist, oder eine Nebenschlussleitung zum elektrischen Verbinden des SAW-Wandlers mit einer rückseitigen Metallisierung des SAW-Chips umfassen.

Among the various types of guided acoustic waves, acoustic wedge waves are non-diffractive and non-dispersive. Both properties make them susceptible to nonlinear effects. Investigations have recently been focused on effects of second-order nonlinearity in connection with anisotropy. The current status of these investigations is reviewed in the context of earlier work on nonlinear properties of two-dimensional guided acoustic waves, in particular surface waves. The role of weak dispersion, leading to solitary waves, is also discussed. For anti-symmetric flexural wedge waves propagating in isotropic media or in anisotropic media with reflection symmetry with respect to the wedge’s mid-plane, an evolution equation is derived that accounts for an effective third-order nonlinearity of acoustic wedge waves. For the kernel functions occurring in the nonlinear terms of this equation, expressions in terms of overlap integrals with Laguerre functions are provided, which allow for their quantitative numerical evaluation. First numerical results for the efficiency of third-harmonic generation of flexural wedge waves are presented.

Micro-cracks give rise to non-analytic behavior of the stress-strain relation. For the case of a homogeneous spatial distribution of aligned flat micro-cracks, the influence of this property of the stress-strain relation on harmonic generation is analyzed for Rayleigh waves and for acoustic wedge waves with the help of a simple micromechanical model adopted from the literature. For the efficiencies of harmonic generation of these guided waves, explicit expressions are derived in terms of the corresponding linear wave fields. The initial growth rates of the second harmonic, i.e., the acoustic nonlinearity parameter, has been evaluated numerically for steel as matrix material. The growth rate of the second harmonic of Rayleigh waves has also been determined for microcrack distributions with random orientation, using a model expression for the strain energy in terms of strain invariants known in a geophysical context.

In the present work, nonlinearities in temperature
compensating (TC) SAW devices are investigated. The materials
used are LiNbO3-rot128YX as the substrate and Copper electrodes covered with a SiO2-layer as the compensating layer.
In order to understand the role of these materials for the
nonlinearities in such acoustic devices, a FEM simulation model
in combination with a perturbation approach [1] is applied.
The nonlinear tensor data of the different materials involved
in TC-SAW devices have been taken from literature, but were
partially modified to fit experimental data by introducing scaling factors. An effective nonlinearity constant is determined
by comparison of nonlinear P-matrix simulations to IMD3
measurements of test filters. By employing these constants in
nonlinear periodic P-matrix simulations a direct comparison to
nonlinear periodic FEM-simulations yields the scaling factors for
the material used. Thus, the contribution of different materials
to the nonlinear behavior of TC-SAW devices is obtained and
the role of metal electrodes is discussed in detail

Elastic constants of components are usually determined by tensile tests in combination with ultrasonic
experiments. However, these properties may change due to e.g. mechanical treatments or service conditions during
their lifetime. Knowledge of the actual material parameters is key to the determination of quantities like residual
stresses present in the medium. In this work the acoustic nonlinearity parameter (ANP) for surface acoustic waves is
examined through the derivation of an evolution equation for the amplitude of the second harmonic. Given a certain
depth profile of the third-order elastic constants, the dependence of the ANP with respect to the input frequency is
determined and on the basis of these results, an appropriate inversion method is developed. This method is intended
for the extraction of the depth dependence of the third-order elastic constants of the material from second-harmonic
generation and guided wave mixing experiments, assuming that the change in the linear Rayleigh wave velocity is
small. The latter assumption is supported by a 3D-FEM model study of a medium with randomly distributed microcracks as well as theoretical works on this topic in the literature.