Refine
Year of publication
Document Type
- Part of a Book (8)
- Conference Proceeding (7)
- Article (unreviewed) (7)
- Book (6)
- Patent (4)
- Article (reviewed) (1)
Conference Type
- Konferenzartikel (7)
Has Fulltext
- no (33)
Is part of the Bibliography
- yes (33)
Keywords
- Steuerrecht (5)
- Internationales Steuerrecht (4)
- Raman-Spektroskopie (3)
- Algorithmus (2)
- Fallsammlung (2)
- Spektroskopie (2)
- Aircraft (1)
- Arbeitsrecht (1)
- Arbeitszeugnis (1)
- Attenuation (1)
Institute
Open Access
- Closed Access (10)
- Closed (5)
- Open Access (2)
- Bronze (1)
La industria del bacanora en Sonora, México, enfrenta la influencia de una compleja red de factores culturales, tecnológicos, económicos y legales que inhiben su desarrollo. Ello ocurre pese al esfuerzo institucional por radicar un marco normativo que elimine la práctica de los métodos informales de elaboración que derivan en calidades heterogéneas de licor. El conseguirlo se complica ante la dificultad que enfrentan los actores de esta industria para implementar prácticas efectivas de verificación de las normas vigentes en los confines de la geografía de la Denominación de Origen. En este documento se describe el uso de un prototipo de espectrómetro Raman por transformada de Fourier para analizar cualitativamente muestras desconocidas de bacanora. Este dispositivo se construyó con el uso de un interferómetro Michelson convencional, un contador de fotones de diseño propio y un foto-detector de referencia. Los resultados del trabajo confirman que dada su naturaleza de diseño y construcción, este instrumento de medición y su efectiva técnica de operación a bajo costo, constituye una alternativa viable, adaptable fácilmente a las necesidades de los actores productivos e institucionales, para asistirlos en la elaboración de bacanora y a la verificación de su calidad conforme a los criterios de la normatividad.
The invention concerns a method for spectrum monitoring a given frequency band, in which the spectral power density (S(f)) within the given frequency band is determined for all noise and signal components in the frequency band and, in order to detect the presence of one or more signals within the given frequency band, it is evaluated whether the spectral power density (S(f)) exceeds a threshold value (&lgr;). According to the invention, the threshold value (&lgr;) is calculated in accordance with an estimation of a distribution density (hR(S)) for the noise component of the spectral power density (S(f)) within the given frequency band and in accordance with a predefined value for the false-alarm probability (Pfa).
Raman spectra from three different binary gasoline-ethanol blends (with ratios 95:5, 90:10, and 85:15) have been obtained by using a low-cost, frequency precise Fourier-transform Raman spectrometer (FT-Raman) prototype. The spectral information is presented in the range of 0 to 3500 cm-1 with a resolution of 1.66 cm-1, which is greater than the required for most liquid and solid chemical samples. This set-up delivers spectral information about the sample with a reduced spectral deviation compared to theoretical values (less than 0.4 cm-1 without compensation for instrumental response). The robust and highly fexible FT-Raman prototype presented for the spectral analysis, consisting mainly of a Michelson interferometer and a self-designed photon counter, is able to deliver high resolution and frequency precise Raman spectra from the gasoline-ethanol blends comparable to the obtained by using commercial devices. This FT-Raman set-up does not need additional complex hardware or software control and relies on re-sampling and interpolation algorithms. The qualitative spectral information obtained has been used to calculate the proportion of gasoline and ethanol present in the used chemical samples without using extra calibrations methods or chemical markers.
The combination of fossil-derived fuels with ethanol and methanol has acquired relevance and attention in several countries in recent years. This trend is strongly affected by market prices, constant geopolitical events, new sustainability policies, new laws and regulations, etc. Besides bio-fuels these materials also include different additives as anti-shock agents and as octane enhancer. Some of the chemical compounds in these additives may have harmful properties for both environment and public health (besides the inherent properties, like volatility). We present detailed Raman spectral information from toluene (C7H8) and ethanol (C2H6O) contained in samples of ElO gasoline-ethanol blends. The spectral information has been extracted by using a robust, high resolution Fourier-Transform Raman spectrometer (FT-Raman) prototype. This spectral information has been also compared with Raman spectra from pure additives and with standard Raman lines in order to validate its accuracy in frequency. The spectral information is presented in the range of 0 cm-1 to 3500 cm-1 with a resolution of 1.66cm-1. This allows resolving tight adjacent Raman lines like the ones observed around 1003cm-1 and 1030cm-1 (characteristic lines of toluene). The Raman spectra obtained show a reduced frequency deviation when compared to standard Raman spectra from different calibration materials. The FT-Raman spectrometer prototype used for the analysis consist basically of a Michelson interferometer and a self-designed photon counter cooled down on a Peltier element arrangement. The light coupling is achieved with conventional62.5/125μm multi-mode fibers. This FT-Raman setup is able to extract high resolution and frequency precise Raman spectra from the additives in the fuels analyzed. The proposed prototype has no additional complex hardware components or costly software modules. The mechanical and thermal disturbances affecting the FT-Raman system are mathematically compensated by accurately extracting the optical path information of the Michelson interferometer. This is accomplished by generating an additional interference pattern with a λ = 632.8 nm Helium-Neon laser (HeNe laser). It enables the FT-Raman system to perform reliable and clean spectral measurements from the materials under observation.
The industry of the agave-derived bacanora, in the northern Mexican state of Sonora, has been growing substantially in recent years. However, this higher demand still lies under the influences of a variety of social, legal, cultural, ecological and economic elements. The governmental institutions of the state have tried to encourage a sustainable development and certain levels of standardization in the production of bacanora by applying different economical and legal strategies. However, a large portion of this alcoholic beverage is still produced in a traditional and rudimentary fashion. Beyond the quality of the beverage, the lack of proper control, by using adequate instrumental methods, might represent a health risk, as in several cases traditional-distilled beverages can contain elevated levels of harmful materials. The present article describes the qualitative spectral analysis of samples of the traditional-produced distilled beverage bacanora in the range from 0 cm−1 to 3500 cm−1 by using a Fourier Transform Raman spectrometer. This particular technique has not been previously explored for the analysis of bacanora, as in the case of other beverages, including tequila. The proposed instrumental arrangement for the spectral analysis has been built by combining conventional hardware parts (Michelson interferometer, photo-diodes, visible laser, etc.) and a set of self-developed evaluation algorithms. The resulting spectral information has been compared to those of pure samples of ethanol and to the spectra from different samples of the alcoholic beverage tequila. The proposed instrumental arrangement can be used the analysis of bacanora.
The Raman spectra from the chemical compounds toluene and cyclohexane obtained using a Fourier Transform (FT)-Raman spectrometer prototype have been contrasted with the Raman spectra of these same materials collected with two different commercial FT-Raman devices. The FT-Raman spectrometer consist of a Michelson interferometer, a self-designed photon counter and a reference photo-detector. The evaluation methodology of the spectral information, contrary to the commercial devices that commonly use the zero-crossing method, is carried out by re-sampling the Raman scattering and by accurately extracting the optical path information of the Michelson interferometer. The FTRaman arrangement has been built using conventional parts without disregarding the spectral frequency precision that usually such a FTRaman instruments deliver. No additional complex hardware components or costly software modules have been included in this FT-Raman device. The main Raman lines from the spectra obtained with the three FT-Raman devices have been compared with the Raman lines from the standard Raman spectra of these two materials. The values obtained using the FT-Raman spectrometer prototype have shown a frequency accuracy comparable to that obtained with the commercial devices without facing the need for a large investment. Although the proposed FT-Raman prototype cannot be directly compared to the last generation of FT-Raman spectrometers from the commercial manufacturers, such a device could give an opportunity to users that require high frequency precision in their spectral analysis and are provided with rather scarce resources.
We report the use of the Raman spectral information of the chemical compound toluene C7H8 as a reference on the analysis of laboratory-prepared and commercially acquired gasoline-ethanol blends. The rate behavior of the characteristic Raman lines of toluene and gasoline has enabled the approximated quantification of this additive in commercial gasoline-ethanol mixtures. This rate behavior has been obtained from the Raman spectra of gasoline-ethanol blends with different proportions of toluene.
All these Raman spectra have been collected by using a self-designed, frequency precise and low-cost Fourier-transform Raman spectrometer (FT-Raman spectrometer) prototype. This FT-Raman prototype has helped to accurately confirm the frequency position of the main characteristic Raman lines of toluene present on the different gasoline-ethanol samples analyzed at smaller proportions than those commonly found in commercial gasoline-ethanol blends. The frequency accuracy validation has been performed by analyzing the same set of toluene samples with two additional state-of-the-art commercial FT-Raman devices. Additionally, the spectral information has been contrasted, with highly-correlated coefficients as a result, with the values of the standard Raman spectrum of toluene.
Die Erfindung betrifft ein Verfahren zum Spektrum-Monitoring eines vorgegebenen Frequenzbandes, bei dem die spektrale Leistungsdichte (S(f)) innerhalb des vorgegebenen Frequenzbandes für alle in dem Frequenzband enthaltenen Rausch- und Signalanteile bestimmt wird und für das Detektieren des Vorhandenseins eines oder mehrerer Signale innerhalb des vorgegebenen Frequenzbandes das Überschreiten eines Schwellenwertes (λ) durch die spektrale Leistungsdichte (S(f)) ausgewertet wird. Erfindungsgemäß wird der Schwellenwert (λ) abhängig von einer Schätzung einer Verteilungsdichte (hR(S)) für den Rauschanteil der spektralen Leistungsdichte (S(f)) innerhalb des vorgegebenen Frequenzbandes und einem vorgegebenen Wert für die Falschalarmwahrscheinlichkeit (Pfa) berechnet.