Refine
Document Type
Conference Type
- Konferenzartikel (4)
Is part of the Bibliography
- yes (8)
Keywords
- 3D Printed Force Sensor (1)
- 3D printing (1)
- Artificial Feedback (1)
- EOG (1)
- Embedded Constantan Wire (1)
- Eye Tracking (1)
- Eyetracking (1)
- Roboter (1)
- Robotics (1)
- Sensing Element (1)
Institute
Open Access
- Open Access (5)
- Closed (3)
- Gold (2)
- Bronze (1)
Novel approaches for the design of assistive technology controls propose the usage of eye tracking devices such as for smart wheelchairs and robotic arms. The advantages of artificial feedback, especially vibrotactile feedback, as opposed to their use in prostheses, have not been sufficiently explored. Vibrotactile feedback reduces the cognitive load on the visual and auditory channel. It provides tactile sensation, resulting in better use of assistive technologies. In this study the impact of vibration on the precision and accuracy of a head-worn eye tracking device is investigated. The presented system is suitable for further research in the field of artificial feedback. Vibration was perceivable for all participants, yet it does not produce any significant deviations in precision and accuracy.
3D printing offers customisation capabilities regarding suspensions for oscillators of vibration energy harvesters. Adjusting printing parameters or geometry allows to influence dynamic properties like resonance frequency or bandwidth of the oscillator. This paper presents simulation results and measurements for a spiral shaped suspension printed with polylactic acid (PLA) and different layer heights. Eigenfrequencies have been simulated and measured and damping ratios have been experimentally determined.
The development of a 3D printed force sensor for a gripper was studied applying an embedded constantan wire as sensing element. In the first section, the state of the art is explained. In the main section of the paper the modeling, simulation and verification of a sensor element are described for a three-point bending test made in accordance with the DIN EN ISO 178. The 3D printing process of the Fused Filament Fabrication (FFF) utilized for manufacturing the sensor samples in combination with an industrial robot are shown. A comparison between theory and practice are considered in detail. Finally, an outlook is given regarding the integration of the sensor element in gripper jaws.
A novelty solution for controls of assistive technology represent the usage of eye tracking devices such as for smart wheelchairs and robotic arms [10, 4]. In this context usage supporting methods like artificial feedback are not well explored. Vibrotactile feedback has shown to be helpful to decrease the cognitive load on the visual and auditive channels and can provide a perception of touch [17]. People with severe limitations of motor functions could benefit from eye tracking controls supported with vibrotactile feedback. In this study fundamental results will be presented in the design of an appropriate vibrotactile feedback system for eye tracking applications. We will show that a perceivable vibrotactile stimulus has no significant effect on the accuracy and precision of a head worn eye tracking device. It is anticipated that the results of this paper will lead to new insights in the design of vibrotactile feedback for eye tracking applications and eye tracking controls.
Established robot manufacturers have developed methods to determine and optimize the accuracy of their robots. These methods vary from robot manufacturers to their competitors. Due to the lack of published data, a comparison of robot performance is difficult. The aim of this article is to find methods to evaluate important characteristics of a robot with an accurate and cost-effective setup. A laser triangulation sensor and geometric referenced spheres were used as a base to compare the robot performance.
Background: Assistive Robotic Arms are designed to assist physically disabled people with daily activities. Existing joysticks and head controls are not applicable for severely disabled people such as people with Locked-in Syndrome. Therefore, eye tracking control is part of ongoing research. The related literature spans many disciplines, creating a heterogeneous field that makes it difficult to gain an overview.
Objectives: This work focuses on ARAs that are controlled by gaze and eye movements. By answering the research questions, this paper provides details on the design of the systems, a comparison of input modalities, methods for measuring the performance of these controls, and an outlook on research areas that gained interest in recent years.
Methods: This review was conducted as outlined in the PRISMA 2020 Statement. After identifying a wide range of approaches in use the authors decided to use the PRISMA-ScR extension for a scoping review to present the results. The identification process was carried out by screening three databases. After the screening process, a snowball search was conducted.
Results: 39 articles and 6 reviews were included in this article. Characteristics related to the system and study design were extracted and presented divided into three groups based on the use of eye tracking.
Conclusion: This paper aims to provide an overview for researchers new to the field by offering insight into eye tracking based robot controllers. We have identified open questions that need to be answered in order to provide people with severe motor function loss with systems that are highly useable and accessible.
In der Forschungsgruppe um Prof. Dr. Thomas Wendt werden Themen in unterschiedlichsten Bereichen von Automatisierungstechnik über funktionale Sicherheit bis hin zur 3D-gedruckten Elektronik / Sensorik behandelt. Insgesamt arbeiten vier Doktoranden und vier Mitarbeiter an der Weiterentwicklung der verschiedenen Technologien, die in diesem Artikel zusammengefasst dargestellt sind.
In diesem Artikel werden die neuesten Entwicklungen in der Forschungsgruppe um Herrn Prof. Dr. Wendt vorgestellt. Es wird der Einsatz des neuen 3-D-Druckers der Firma Neotech, sowie die neuesten Entwicklungen im Leuchtturmprojekt Flitzmo beschrieben. Zudem konnte dieses Jahr mit dem Projekt zum Einsatz von Robotik im Bereich Assisted Living begonnen werden.