Refine
Document Type
- Article (unreviewed) (5)
- Conference Proceeding (4)
- Article (reviewed) (1)
- Contribution to a Periodical (1)
- Report (1)
Conference Type
- Konferenzartikel (3)
- Konferenz-Poster (1)
Is part of the Bibliography
- yes (12)
Keywords
- Biogas (3)
- Energiemarkt (2)
- Enzym (2)
- industry (2)
- 1,5-Grad-Ziel (1)
- Abhängigkeit des deutschen Elektrizitätssystems (1)
- Banana residues (1)
- Biogas Potential (1)
- Climate change (1)
- Coal phase-out (1)
Institute
Open Access
- Open Access (8)
- Grün (3)
- Diamond (2)
- Bronze (1)
- Closed Access (1)
Do you know that for each banana bunch the complete plant must be cut as well? Only in Brazil 440 million trees are planted annually. With an average weight of 30 kg per banana plant you can estimate about 13,5 million tons of banana residues per year. Although there exist some projects to use these residues for the production of valuable products (e.g fibers for textile and paper production) most of this organic waste material is unused and left for composting on the farmland.
The basic idea of this project is to evaluate this organic waste material for converting it to a renewable and CO2 neutral fuel. Therefore, the different parts of the banana plant (heart, leaves and pseudo stem) were analyzed regarding their biogas potential (specific biogas yield and biogas production kinetics). In further studies the effect of mechanical and enzymatic pretreatments of the different parts of the plants was investigated. This examination could then be the basis for an energetic usage of this organic residue.
The biogas batch experiments were performed according to the german guideline VDI 4630 in 2-L-Batch reactors at 37°C. As biogas substrates, the heart, the leaves and the pseudo stem of the banana plant residue with and without enzymatic/mechanical pretreatment were used.
The different parts of the banana plants result in a specific biogas production yield in the range of 260-470 norm liters per kg organic dry mass.
To determine the influence of the mechanical pretreatment (particle size 1-15 mm) on the biogas production kinetics, the kinetic constants were defined and calculated. The reduction of the particle size leads to an improved biogas production kinetics. Therefore experiments will demonstrate, if the results from the batch experiments can be converted in the continuous fed biogas reactor. The experiments of the enzymatic pretreatment are still under investigation.
To achieve its climate goals, the German industry has to undergo a transformation toward renewable energies. To analyze this transformation in energy system models, the industry’s electricity demands have to be provided in a high temporal and sectoral resolution, which, to date, is not the case due to a lack of open-source data. In this paper, a methodology for the generation of synthetic electricity load profiles is described; it was applied to 11 industry types. The modeling was based on the normalized daily load profiles for eight electrical end-use applications. The profiles were then further refined by using the mechanical processes of different branches. Finally, a fluctuation was applied to the profiles as a stochastic attribute. A quantitative RMSE comparison between real and synthetic load profiles showed that the developed method is especially accurate for the representation of loads from three-shift industrial plants. A procedure of how to apply the synthetic load profiles to a regional distribution of the industry sector completes the methodology.
To achieve Germany's climate targets, the industrial sector, among others, must be transformed. The decarbonization of industry through the electrification of heating processes is a promising option. In order to investigate this transformation in energy system models, high-resolution temporal demand profiles of the heat and electricity applications for different industries are required. This paper presents a method for generating synthetic electricity and heat load profiles for 14 industry types. Using this methodology, annual profiles with a 15-minute resolution can be generated for both energy demands. First, daily profiles for the electricity demand were generated for 4 different production days. These daily profiles are additionally subdivided into eight end-use application categories. Finally, white noise is applied to the profile of the mechanical drives. The heat profile is similar to the electrical but is subdivided into four temperature ranges and the two applications hot water and space heating. The space heating application is additionally adjusted to the average monthly outdoor temperature. Both time series were generated for the analysis of an electrification of industrial heat application in energy system modelling.
The energy system is changing since some years in order to achieve the climate goals from the Paris Agreement which wants to prevent an increase of the global temperature above 2 °C [1]. Decarbonisation of the energy system has become for governments a big challenge and different strategies are being stablished. Germany has set greenhouse gas reduction limits for different years and keeps track of the improvement made yearly. The expansion of renewable energy systems (RES) together with decarbonisation technologies are a key factor to accomplish this objective.
This research is done to analyse the effect of introducing biochar, a decarbonisation technology, and study how it will affect the energy system. Pyrolysis is the process from which biochar is obtained and it is modelled in an open-source energy system model. A sensibility analysis is done in order to assess the effect of changing the biomass potential and the costs for pyrolysis.
The role of pyrolysis is analysed in the form of different future scenarios for the year 2045 to evaluate the impact when the CO2 emission limit is zero. All scenarios are compared to the reference scenario, where pyrolysis is not considered.
Results show that biochar can be used to compensate the emissions from other conventional power plant and achieve an energy transition with lower costs. Furthermore, it was also found that pyrolysis can also reduce the need of flexibility. This study also shows that the biomass potential and the pyrolysis costs can strongly affect the behaviour of pyrolysis in the energy system.
Ein Importstopp russischer Energieträger nach Deutschland wird derzeit vermehrt diskutiert. Wir wollen die Diskussion unterstützen, indem wir einen Weg zeigen, wie das Elektrizitätssystem in Deutschland kurzfristig mit geringen Energieimporten auskommt und welche Maßnahmen notwendig sind, um die Klimaschutzziele trotzdem einzuhalten. Die Ergebnisse eines solchen Energiewendeszenarios mit reduzierter Importabhängigkeit werden mit dem Energiesystemmodell MyPyPSA-Ger berechnet. Die wichtigsten Erkenntnisse sind, dass ein zügiger Ausbau Erneuerbarer Energien und von Speichertechnologien • die Abhängigkeit des deutschen Elektrizitätssystems von Energieimporten deutlich reduziert. • auch langfristig keine wesentlichen Importe der Energieträger Erdgas, Steinkohle und Mineralöl nach sich zieht. • über die Klimaziele der Bundesregierung hinaus das 1,5-Grad-Ziel im Elektrizitätssystem erreicht wird.
During pyrolysis, biomass is carbonised in the absence of oxygen to produce biochar with heat and/or electricity as co-products making pyrolysis one of the promising negative emission technologies to reach climate goals worldwide. This paper presents a simplified representation of pyrolysis and analyses the impact of this technology on the energy system. Results show that the use of pyrolysis can allow getting zero emissions with lower costs by making changes in the unit commitment of the power plants, e.g. conventional power plants are used differently, as the emissions will be compensated by biochar. Additionally, the process of pyrolysis can enhance the flexibility of energy systems, as it shows a correlation between the electricity generated by pyrolysis and the hydrogen installation capacity, being hydrogen used less when pyrolysis appears. The results indicate that pyrolysis, which is available on the market, integrates well into the energy system with a promising potential to sequester carbon.
GaIN - Gewinnbringende Partizipation der mittelständischen Industrie am Energiemarkt der Zukunft
(2024)
Der vorliegende Bericht dokumentiert die Arbeiten und Ergebnisse des Forschungsprojekts GaIN – Gewinnbringende Partizipation der mittelständischen Industrie am Energiemarkt der Zukunft (Laufzeit 01.12.2019 bis 30.11.2022), das vom Bundesministerium für Wirtschaft und Klimaschutz „BMWK“ unter den Kennzeichen 03EI6019E gefördert wurde.
Das Ziel des Projektes bestand darin, durch die Digitalisierung der (mittelständischen) Industrie die Unternehmen zu befähigen aktiv gewinnbringend am volatilen Energiemarkt der Zukunft zu partizipieren.
An import ban of Russian energy sources to Germany is currently being increasingly discussed. We want to support the discussion by showing a way how the electricity system in Germany can manage low energy imports in the short term and which measures are necessary to still meet the climate protection targets. In this paper, we examine the impact of a complete stop of Russian fossil fuel imports on the electricity sector in Germany, and how this will affect the climate coals of an earlier coal phase-out and climate neutrality by 2045.
Following a scenario-based analysis, the results gave a point of view on how much would be needed to completely rely on the scarce non-renewable energy resources in Germany. Huge amounts of investments would be needed in order to ensure a secure supply of electricity, in both generation energy sources (RES) and energy storage systems (ESS). The key findings are that a rapid expansion of renewables and storage technologies will significantly reduce the dependence of the German electricity system on energy imports. The huge integration of renewable energy does not entail any significant imports of the energy sources natural gas, hard coal, and mineral oil, even in the long term. The results showed that a ban on fossil fuel imports from Russia outlines huge opportunities to go beyond the German government's climate targets, where the 1.5-degree-target is achieved in the electricity system.
Die Digitalisierung kann der Türöffner sein, um effizient die mittelständische Industrie und den Energiemarkt zu verbinden. Das Projekt GaIN hat das Ziel, mit hochaufgelösten Produktions- und Messdaten von zehn mittelständischen Industriebetrieben neuartige Tarife und angepasste Marktplattformen zu entwickeln, die Prognosegüte für Energiebedarf, Nachfrage und Flexibilitätsverfügbarkeit zu erhöhen, die Interaktion vieler flexibler Unternehmen im Verteilnetz und in dem Bilanzkreis zu bewerten und die Auswirkung einer Nutzung der Daten auf die Energiewende anhand einer Systemanalyse zu beurteilen.