Refine
Document Type
- Conference Proceeding (7)
- Article (reviewed) (2)
- Part of a Book (1)
Conference Type
- Konferenzartikel (6)
- Konferenz-Poster (1)
Is part of the Bibliography
- yes (10)
Keywords
- Assistive Technology (7)
- Deafblindness (5)
- Haptics (3)
- Wearables (3)
- Gamification (2)
- Smart Textiles (2)
- Tactile (2)
- Acceptance (1)
- Deafblind (1)
- Design (1)
Institute
Open Access
- Closed Access (9)
- Diamond (1)
- Open Access (1)
A Gamified and Adaptive Learning System for Neurodivergent Workers in Electronic Assembling Tasks
(2020)
Learning and work-oriented assistive systems are often designed to fit the workflow of neurotypical workers. Neurodivergent workers and individuals with learning disabilities often present cognitive and sensorimotor characteristics that are better accommodated with personalized learning and working processes. Therefore, we designed an adaptive learning system that combines an augmented interaction space with user-sensitive virtual assistance to support step-by-step guidance for neurodivergent workers in electronic assembling tasks. Gamified learning elements were also included in the interface to provide self-motivation and praise whenever users progress in their learning and work achievements.
Deafblindness, also known as dual sensory loss, is the combination of sight and hearing impairments of such extent that it becomes difficult for one sense to compensate for the other. Communication issues are a key concern for the Deafblind community. We present the design and technical implementation of the Tactile Board: a mobile Augmentative and Alternative Communication (AAC) device for individuals with deafblindness. The Tactile Board allows text and speech to be translated into vibrotactile signs that are displayed real-time to the user via a haptic wearable. Our aim is to facilitate communication for the deafblind community, creating opportunities for these individuals to initiate and engage in social interactions with other people without the direct need of an intervener.
Deafblindness, a form of dual sensory impairment, signifcantly impacts communication, access to information and mobility. Inde- pendent navigation and wayfnding are main challenges faced by individuals living with combined hearing and visual impairments. We developed a haptic wearable that provides sensory substitution and navigational cues for users with deafblindness by conveying vibrotactile signals onto the body. Vibrotactile signals on the waist area convey directional and proximity information collected via a fisheye camera attached to the garment, while semantic informa- tion is provided with a tapping system on the shoulders. A playful scenario called “Keep Your Distance” was designed to test the navigation system: individuals with deafblindness were “secret agents” that needed to follow a “suspect”, but they should keep an opti- mal distance of 1.5 meters from the other person to win the game. Preliminary fndings suggest that individuals with deafblindness enjoyed the experience and were generally able to follow the directional cues.
Interaction and capturing information from the surrounding is dominated by vision and hearing. Haptics on the other side, widens the bandwidth and could also replace senses (sense switching) for impaired. Haptic technologies are often limited to point-wise actuation. Here, we show that actuation in two-dimensional matrices instead creates a richer input. We describe the construction of a full-body garment for haptic communication with a distributed actuating network. The garment is divided into attachable-detachable panels or add-ons that each can carry a two dimensional matrix of actuating haptic elements. Each panel adds to an enhanced sensoric capability of the human- garment system so that together a 720° system is formed. The spatial separation of the panels on different body locations supports semantic and theme-wise separation of conversations conveyed by haptics. It also achieves directional faithfulness, which is maintaining any directional information about a distal stimulus in the haptic input.
Nowadays, the wide majority of Europeans uses smartphones. However, touch displays are still not accessible by everyone. Individuals with deafblindness, for example, often face difculties in accessing vision-based touchscreens. Moreover, they typically have few fnancial resources which increases the need for customizable, low-cost assistive devices. In this work-in-progress, we present four prototypes made from low-cost, every-day materials, that make modern pattern lock mechanisms more accessible to individuals with vision impairments or even with deafblindness. Two out of four prototypes turned out to be functional tactile overlays for accessing digital 4-by-4 grids that are regularly used to encode dynamic dot patterns. In future work, we will conduct a user study investigating whether these two prototypes can make dot-based pattern lock mechanisms more accessible for individuals with visual impairments or deafblindness.
Co-Designing Assistive Tools to Support Social Interactions by Individuals Living with Deafblindness
(2020)
Deafblindness is a dual sensory impairment that affects many aspects of life, including mobility, access to information, communication, and social interactions. Furthermore, individuals living with deafblindness are under a high risk of social isolation. Therefore, we identified opportunities for applying assistive tools to support social interactions through co-ideation activities with members of the deafblind community. This work presents our co-design approach, lessons learned and directions for designing meaningful assistive tools for dual sensory loss.
Soziale Roboter, die mit uns kommunizieren und menschliche Verhaltensmuster imitieren, sind ein wichtiges Zukunftsthema. Während viele Arbeiten ihr Design und ihre Akzeptanz erforschen, gibt es bislang nur wenige Untersuchungen zu ihrer Marktfähigkeit. Der Schwerpunkt dieser Arbeit liegt auf dem Einsatz sozialer Roboter in den Bereichen Gesundheit und Pflege, wo die zukünftige Integration sozialer Roboter ein enormes Potenzial hat. Eine Studie mit 197 Personen aus Italien und Deutschland untersucht gewünschte Funktionalitäten und Kaufpräferenzen und berücksichtigt hierbei kulturelle Unterschiede. Dabei bestätigte sich die Wichtigkeit mehrerer Dimensionen des ALMERE-Modells (z. B. wahrgenommene Freude, Nützlichkeit und Vertrauenswürdigkeit). Die Akzeptanz korreliert stark mit der Investitionsbereitschaft. Viele ältere Personen betrachten soziale Roboter als „assistierende technische Geräte“ und erwarten, dass diese von Versicherungen und der öffentlichen Hand bezuschusst werden. Um ihren zukünftigen Einsatz zu erleichtern, sollten soziale Roboter in die Datenbanken medizinischer Hilfsmittel integriert werden.
Purpose: Participation and accessibility issues faced by gamers with multi-sensory disabilities are themes yet to be fully understood by accessible technology researchers. In this work, we examine the personal experiences and perceptions of individuals with deafblindness who play games despite their disability, as well as the reasons that lead some of them to stop playing games.
Materials and methods: We conducted 60 semi-structured interviews with individuals living with deafblindness in five European countries: United Kingdom, Germany, Netherlands, Greece and Sweden.
Results: Participants stated that reasons for playing games included them being a fun and entertaining hobby, for socialization and meeting others, or for occupying the mind. Reasons for stop playing games included essentially accessibility issues, followed by high cognitive demand, changes in gaming experience due their disability, financial reasons, or because the accessible version of a specific game was not considered as fun as the original one.
Conclusions: We identified that a considerable number of individuals with deafblindness enjoy playing casual mobile games such as Wordfeud and Sudoku as a pastime activity. Despite challenging accessibility issues, games provide meaningful social interactions to players with deafblindness. Finally, we introduce a set of user-driven recommendations for making digital games more accessible to players with a diverse combination of sensory abilities.
IMPLICATIONS FOR REHABILITATION
- Digital games were considered a fun and entertaining hobby by participants with deafblindness. Furthermore, participants play games for socialization and meeting others, or for occupying the mind.
- Digital games provide meaningful social interactions and past time to persons with deafblindness.
- On top of accessibility implications, our findings draw attention to the importance of the social element of gaming for persons with deafblindness.
- Based on interviews, we introduce a set of user-driven recommendations for making digital games more accessible to players with a diverse combination of sensory abilities.
Social Haptic Communication (SHC) is one of the many tactile modes of communication used by persons with deafblindness to access information about their surroundings. SHC usually involves an interpreter executing finger and hand signs on the back of a person with multi-sensory disabilities. Learning SHC, however, can become challenging and time-consuming, particularly to those who experience deafblindness later in life. In this work, we present PatRec: a mobile game for learning SHC concepts. PatRec is a multiple-choice quiz game connected to a chair interface that contains a 3x3 array of vibration motors emulating different SHC signs. Players collect scores and badges whenever they guess the right SHC vibration pattern, leading to continuous engagement and a better position on a leaderboard. The game is also meant for family members to learn SHC. We report the technical implementation of PatRec and the findings from a user evaluation.
In the last years, social robots have become a trending topic. Indeed, robots which communicate with us and mimic human behavior patterns are fascinating. However, while there is a massive body of research on their design and acceptance in different fields of application, their market potential has been rarely investigated. As their future integration in society may have a vast disruptive potential, this work aims at shedding light on the market potential, focusing on the assistive health domain. A study with 197 persons from Italy (age: M = 67.87; SD = 8.87) and Germany (age: M = 62.15; SD = 6.14) investigates cultural acceptance, desired functionalities, and purchase preferences. The participants filled in a questionnaire after watching a video illustrating some examples of social robots. Surprisingly, the individual perception of health status, social status as well as nationality did hardly influence the attitude towards social robots, although the German group was somewhat more reluctant to the idea of using them. Instead, there were significant correlations with most dimensions of the Almere model (like perceived enjoyment, sociability, usefulness and trustworthiness). Also, technology acceptance resulted strongly correlated with the individual readiness to invest money. However, as most persons consider social robots as “Assistive Technological Devices” (ATDs), they expected that their provision should mirror the usual practices followed in the two Countries for such devices. Thus, to facilitate social robots’ future visibility and adoption by both individuals and health care organisations, policy makers would need to start integrating them into official ATDs databases.