Refine
Document Type
Conference Type
- Konferenzartikel (6)
- Konferenz-Poster (1)
- Sonstiges (1)
Has Fulltext
- no (7)
Is part of the Bibliography
- yes (7)
Keywords
- Kryptographie (1)
- Leap Motion Controller (1)
- Licht (1)
- Netzwerk (1)
- Optik (1)
- Phontonik (1)
- Privatsphäre (1)
- Simulation (1)
- Smart Grid (1)
- Virtuelle Realität (1)
Institute
Open Access
- Open Access (5)
- Closed Access (2)
The aim of the smart grid is to achieve more efficient, distributed and secure supply of energy over the traditional power grid by using a bidirectional information flow between the grid agents (e.g. generator node, customer). One of the key optimization problems in smart grid is to produce power among generator nodes with a minimum cost while meeting the customer demand, known as Economic Dispatch Problem (EDP). In recent years, many distributed approaches to solve EDP have been proposed. However, protecting the privacy-sensitive data of individual generator nodes has been largely overlooked in the existing solutions. In this work, we show an attack against an existing auction-based EDP protocol considering a non-colluding semi-honest adversary. We briefly introduce our approach to a practical privacy-preserving EDP solution as our work in progress.
The economic dispatch (ED) problem is a large-scale optimization problem in electricity power grids. Its goal is to find a power output combination of all generator nodes that meet the demand of the customers at minimum operating cost. In recent years, distributed protocols have been proposed to replace the traditional centralized ED calculation for modern smart grid infrastructures with the most realistic being the one proposed by Binetti et al. (2014). However, we show that this protocol leaks private information of the generator nodes. We then propose a privacy-preserving distributed protocol that solves the ED problem. We analyze the security of our protocol and give experimental results from a prototype implementation to show the feasibility of the solution.
The International Year of Light and Light-Based Technologies 2015 (IYL 2015) was celebrated around the world. Worldwide activities were organized to highlight the impact of optics and photonics on life, science, economics, arts and culture, and also in education. With most of our activities at Offenburg University of Applied Sciences (Offenburg/Germany), we reached our own students and the general population of our region: - University for Children: “The Magic of Light“ winter lecture program and “Across the Universe with Relativity and Quantum Theory” summer lecture program - “Students Meet Scientists” - “A Century of General Relativity Theory” lecture program Nevertheless, with some of our activities we also engaged a worldwide audience: - IYL 2015 art poster collection (Magic of Light and No Football, Just Photonics) - Smart Interactive Projection - Twitter Wall - “Invisible Light” - Live broadcasting of the total lunar eclipse - Film Festival Merida Mexico The authors will highlight recent activities at our university dedicated to promote, celebrate, and create a legacy for the IYL 2015.
In the age data digitalization, important applications of optics and photonics based sensors and technology lie in the field of biometrics and image processing. Protecting user data in a safe and secure way is an essential task in this area. However, traditional cryptographic protocols rely heavily on computer aided computation. Secure protocols which rely only on human interactions are usually simpler to understand. In many scenarios development of such protocols are also important for ease of implementation and deployment. Visual cryptography (VC) is an encryption technique on images (or text) in which decryption is done by human visual system. In this technique, an image is encrypted into number of pieces (known as shares). When the printed shares are physically superimposed together, the image can be decrypted with human vision. Modern digital watermarking technologies can be combined with VC for image copyright protection where the shares can be watermarks (small identification) embedded in the image. Similarly, VC can be used for improving security of biometric authentication. This paper presents about design and implementation of a practical laboratory experiment based on the concept of VC for a course in media engineering. Specifically, our contribution deals with integration of VC in different schemes for applications like digital watermarking and biometric authentication in the field of optics and photonics. We describe theoretical concepts and propose our infrastructure for the experiment. Finally, we will evaluate the learning outcome of the experiment, performed by the students. © (2016) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Practical exercises are a crucial part of many curricula. Even simple exercises can improve the understanding of the underlying subject. Most experimental setups require special hardware. To carry out e. g. a lens experiments the students need access to an optical bench, various lenses, light sources, apertures and a screen. In our previous publication we demonstrated the use of augmented reality visualization techniques in order to let the students prepare with a simulated experimental setup. Within the context of our intended blended learning concept we want to utilize augmented or virtual reality techniques for stationary laboratory exercises. Unlike applications running on mobile devices, stationary setups can be extended more easily with additional interfaces and thus allow for more complex interactions and simulations in virtual reality (VR) and augmented reality (AR). The most significant difference is the possibility to allow interactions beyond touching a screen. The LEAP Motion controller is a small inexpensive device that allows for the tracking of the user’s hands and fingers in three dimensions. It is conceivable to allow the user to interact with the simulation’s virtual elements by the user’s very hand position, movement and gesture. In this paper we evaluate possible applications of the LEAP Motion controller for simulated experiments in augmented and virtual reality. We pay particular attention to the devices strengths and weaknesses and want to point out useful and less useful application scenarios. © (2016) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Ripple: Overview and Outlook
(2015)
Ripple is a payment system and a digital currency which evolved completely independently of Bitcoin. Although Ripple holds the second highest market cap after Bitcoin, there are surprisingly no studies which analyze the provisions of Ripple.
In this paper, we study the current deployment of the Ripple payment system. For that purpose, we overview the Ripple protocol and outline its security and privacy provisions in relation to the Bitcoin system. We also discuss the consensus protocol of Ripple. Contrary to the statement of the Ripple designers, we show that the current choice of parameters does not prevent the occurrence of forks in the system. To remedy this problem, we give a necessary and sufficient condition to prevent any fork in the system. Finally, we analyze the current usage patterns and trade dynamics in Ripple by extracting information from the Ripple global ledger. As far as we are aware, this is the first contribution which sheds light on the current deployment of the Ripple system.
Economic dispatch is a well-known optimization problem in smart grid systems which aims at minimizing the total cost of power generation among generation units while maintaining some system constraints. Recently, some distributed consensus-based approaches have been proposed to replace traditional centralized calculation. However, existing approaches fail to protect privacy of individual units like cost function parameters, generator constraints, output power levels, etc. In this paper, we show an attack against an existing consensus-based economic dispatch algorithm from [16] assuming semi-honest non-colluding adversaries. Then we propose a simple solution by combining a secure sum protocol and the consensus-based economic dispatch algorithm that guarantees data privacy under the same attacker model. Our Privacy Preserving Economic Dispatch (PPED) protocol is information-theoretically secure.