Refine
Document Type
Conference Type
- Konferenzartikel (3)
Is part of the Bibliography
- yes (6)
Keywords
Institute
Open Access
- Closed Access (2)
- Open Access (2)
- Closed (1)
The additive manufacturing processes have developed significantly in recent years. Currently, new generative processes are coming onto the market. Likewise, the number of available materials that can be processed using additive processes is steadily increasing. Therefore, an important task is to integrate these new processes and materials into the university education of engineers. Due to the rapid change and the constant development in the field of additive manufacturing, a pure transfer of knowledge is not expedient, because this obsolete very quickly. Rather, the students should be enabled to use their skills in such a way that they can always handle new technologies and materials independently and meaningfully.
In this paper, therefore, a new course is developed in which the students largely independently work with additive manufacturing processes. For this purpose, teams of four to five students from different technical programs are formed. The teams have the task of developing and manufacturing a product using additive processes. The goal is to create a powerful product by taking into account the optimization of costs and use of resources.
As an example, the development and additive manufacturing of an ornithopter (aircraft that flies by flapping its wings) will be presented in this contribution. The students have to analyze and optimize the mechanics and aerodynamics of the aircraft. In addition, the rules for production-oriented design must be determined and applied. Further more, they should assess the costs and material consumption during development and production.
This contribution shows how the students have achieved the different learning outcomes. In addition, it becomes clear how the students independently acquired and applied their knowledge in development, design and additive manufacturing. Also, it will be demonstrated how much time the students spent on learning the different technologies.
The development of new processes and materials for additive manufacturing is currently progressing rapidly. In order to use the advantages of additive manufacturing, however, product development and design must also be adapted to these new processes. Therefore it is suitable to use structural optimization. To achieve the best results in lightweight design, it is important to have an approach that reduces the volume in the unloaded regions and considers the restrictions and characteristics of the additive manufacturing process. In this contribution, a case study using a humanoid robot is presented. Thus, the pelvis module of a humanoid robot is optimized regarding its weight and stiffness. Furthermore, an integrated design is implemented in order to reduce the number of parts and the screw connections. The manufacturing uses a new aluminum-based material that has been specially developed for use in additive manufacturing and lightweight construction. For the additive manufacturing by means of the Selective Laser Melting (SLM) process, different restrictions and the assembly concepts of the humanoid robot have to be taken into account. These restrictions have to be considered in the setting of the individual parameters and target functions of the structural optimization. As a result, a framework is presented that shows the steps of the redesign and the optimization of the pelvis module. In order to achieve high accuracy with the product, the redesign of the pelvis module is demonstrated with regard to mechanical and thermal postprocessing. Finally, the redesigned part and the different assembly concepts are compared to analyze the economic and technical effects of the optimization.
For some years now, additive manufacturing (AM) has offered an alternative to conventional manufacturing processes. The strengths of AM are primarily the rapid implementation of ideas into a usable product and the ability to produce geometrically complex shapes. It has also significantly advanced the lightweight design of products made of plastic. So far, the strength of printed components made of polymers is previously very limited.
Recently, new AM processes have become available that allow the embedding of short and also long fibers in polymer matrix. Thus, the manufacturing of components that provide a significant increase in strength becomes possible. In this way, both complex geometries and sophisticated applications can be implemented. This paper therefore investigates how this new technology can be implemented in product development, focusing on sports equipment. An extensive literature research shows that lightweight design plays a decisive role in sports equipment. In addition, the advantages of AM in terms of individualized products and low quantities can be fully exploited.
An example of this approach is the steering system for a seat sled used by paraplegic athletes in the Olympic discipline of Nordic paraskiing. A particular challenge here is the placement and alignment of the long carbon fibers within the polymer matrix and the verification of the strength by means of Finite-Element-Analysis (FEA). In addition, findings from bionics are used to optimize the lightweight design of the steering system. Using this example, it can be shown that the weight of the steering system can be drastically reduced compared to conventional manufacturing. At the same time, a number of parts can be saved through function integration and thus the manufacturing and assembly effort can be reduced significantly.
The age of globalisation is characterised by increased competition. An opportunity to succeed in the face of increasing competition lies in the digitisation of production companies. This article is dedicated to the design of a three-stage model platform of Industry 4.0, which focuses on the consistency of processes from the customer to the supplier at all company levels. The model platform is followed by an overview of the transformation steps for evaluating and shaping progress on the way to become a digitised production company.
Das Zeitalter der Digitalisierung ist geprägt durch einen erhöhten Wettbewerb. Eine Chance, bei steigendem Wettbewerb erfolgreich zu bestehen, liegt daher nur in der durchgängigen Digitalisierung von Produktionsunternehmen. Dieser Beitrag stellt eine dreistufige generische Unternehmensmodellplattform Industrie 4.0 vor, die die Durchgängigkeit von Prozessen vom Kunden bis zum Lieferanten auf allen Unternehmensebenen in den Mittelpunkt stellt. Die Schritte zur Bewertung und Gestaltung des Fortschritts auf dem Weg zum digitalisierten Produktionsunternehmen werden aufgezeigt.