Refine
Year of publication
- 2009 (1)
Document Type
Language
- English (1)
Has Fulltext
- yes (1)
Is part of the Bibliography
- yes (1)
Keywords
Institute
Open Access
- Open Access (1)
This study focuses on the experimental and numerical investigations on a commercial Ranque-Hilsch vortex tube. Ranque-Hilsch vortex tubes have many applications in industry and production as they can generate a very cold flow just from pressurized air .e.g. machine tool cooling. Main objective of this study is the energy separation in the flow field which results in a temperature drop on the cold exit of the tube. This was investigated experimentally by measuring the outlet temperature on the cold exit and the pressure drop on the flow restrictor valve on the hot exit. At a pressure drop of 0.5 bar the vortex tube showed the best performance by reaching a cold exit temperature of –16.7 °C. The Inlet flow was pressurised air at 20 °C and 6 bar.<br /> The numerical analysis was carried out by full 3D steady state CFD-simulation using the commercial software ANSYS CFX 11.0. The three dimensional model represented a 120° sector of the tube using periodic boundary conditions. A comparison between different turbulence models (k – å, RNG k – å, k – ù, SST) was carried out. The classic k – å two layer turbulence model showed the best results compared to the experiment. The energy separation and the drop in cold exit temperature are highest when the viscous work term is included into the energy equation. These effects of including the viscous work term into the energy separation have also been investigated.