Refine
Year of publication
Document Type
- Conference Proceeding (58)
- Book (7)
- Article (unreviewed) (7)
- Article (reviewed) (5)
- Contribution to a Periodical (3)
- Part of a Book (1)
- Patent (1)
Conference Type
- Konferenz-Abstract (46)
- Konferenzartikel (10)
- Konferenz-Poster (1)
- Sonstiges (1)
Language
- English (63)
- German (18)
- Other language (1)
Is part of the Bibliography
- yes (82)
Keywords
- Abtragung (6)
- Defibrillator (5)
- Herz (5)
- Kardiale Resynchronisationstherapie (5)
- Elektrokardiogramm (4)
- Herzkrankheit (3)
- Herzschrittmacher (3)
- Hochfrequenztechnik (3)
- Katheter (3)
- Medizintechnik (3)
Institute
Open Access
- Open Access (37)
- Closed Access (26)
- Closed (4)
Cardiac resynchronization therapy with biventricular pacing is an established therapy for heart failure patients with electrical left ventricular desynchronization. The aim of this study was to evaluate left atrial conduction delay, intra left atrial conduction delay, left ventricular conduction delay and intra left ventricular conduction delay in heart failure patients using novel signal averaging transesophageal left heart ECG software.
Methods: 8 heart failure patients with dilated cardiomyopathy (DCM), age 68 ± 9 years, New York Heart Association (NYHA) class 2.9 ± 0.2, 24.8 ± 6.7 % left ventricular ejection fraction, 188.8 ± 15.5 ms QRS duration and 8 heart failure patients with ischaemic cardiomyopathy (ICM), age 67 ± 8 years, NYHA class 2.9 ± 0.3, 32.5 ± 7.4 % left ventricular ejection fraction and 167.6 ± 19.4 ms QRS duration were analysed with transesophageal and transthoracic ECG by Bard LabDuo EP system and novel National Intruments LabView signal averaging ECG software.
Results: The electrical left atrial conduction delay was 71.3 ± 17.6 ms in ICM versus 72.3 ± 12.4 ms in DCM, intra left atrial conduction delay 66.8 ± 8.6 ms in ICM versus 63.4 ± 10.9 ms in DCM and left cardiac AV delay 180.5 ± 32.6 ms in ICM versus 152.4 ± 30.4 ms in DCM. The electrical left ventricular conduction delay was 40.9 ± 7.5 ms in ICM versus 42.6 ± 17 ms in DCM and intra left ventricular conduction delay 105.6 ± 19.3 ms in ICM versus 128.3 ± 24.1 ms in DCM.
Conclusions: Left heart signal averaging ECG can be utilized to analyse left atrial conduction delay, intra left atrial conduction delay, left ventricular conduction delay and intra left ventricular conduction delay to improve patient selection for cardiac resynchronization therapy.
Cardiac resynchronization therapy (CRT) with biventricular pacing is an established therapy for heart failure (HF) patients (P) with ventricular desynchronization and reduced left ventricular (LV) ejection fraction. The aim of this study was to evaluate electrical right atrial (RA), left atrial (LA), right ventricular (RV) and LV conduction delay with novel telemetric signal averaging electrocardiography (SAECG) in implantable cardioverter defibrillator (ICD) P to better select P for CRT and to improve hemodynamics in cardiac pacing.
Methods: ICD-P (n=8, age 70.8 ± 9.0 years; 2 females, 6 males) with VVI-ICD (n=4), DDD-ICD (n=3) and CRT-ICD (n=1) (Medtronic, Inc., Minneapolis, MN, USA) were analysed with telemetric ECG recording by Medronic programmer 2090, ECG cable 2090AB, PCSU1000 oscilloscope with Pc-Lab2000 software (Velleman®) and novel National Intruments LabView SAECG software.
Results: Electrical RA conduction delay (RACD) was measured between onset and offset of RA deflection in the RAECG. Interatrial conduction delay (IACD) was measured between onset of RA deflection and onset of far-field LA deflection in the RAECG. Interventricular conduction delay (IVCD) was measured between onset of RV deflection in the RVECG and onset of LV deflection in the LVECG. Telemetric SAECG recording was possible in all ICD-P with a mean of 11.7 ± 4.4 SAECG heart beats, 97.6 ± 33.7 ms QRS duration, 81.5 ± 44.6 ms RACD, 62.8 ± 28.4 ms RV conduction delay, 143.7 ± 71.4 ms right cardiac AV delay, 41.5 ms LA conduction delay, 101.6 ms LV conduction delay, 176.8 ms left cardiac AV delay, 53.6 ms IACD and 93 ms IVCD.
Conclusions: Determination of RA, LA, RV and LV conduction delay, IACD, IVCD, right and left cardiac AV delay by telemetric SAECG recording using LabView SAECG technique may be useful parameters of atrial and ventricular desynchronization to improve P selection for CRT and hemodynamics in cardiac pacing.
Die kardiale Resynchronisationstherapie ist ein großer Segen für viele Patienten mit einer Herzschwäche, die auf einen krankhaften Verlust der synchronen Kontraktion beider Herzkammern zurückzuführen ist. Warum einige von ihnen jedoch nicht darauf ansprechen, wird gegenwärtig erforscht. Als eine neue Methode mit dem Ziel der Effektivitätssteigerung dieser Therapie mit elektronischen Implantaten demonstrieren wir die Nutzbarkeit von durch eine Schluckelektrode aus der Speiseröhre abgeleiteten Elektrokardiogrammen.
Für den Erfolg einer kardialen Resynchronisationstherapie der Herzinsuffizienz mit biventrikulär stimulierenden Implantaten ist deren individuelle Programmierung von erfolgsbestimmender Bedeutung. Dies trifft insbesondere auf den Parameter AV-Delay zu. Dessen Optimierung durch Echo-Verfahren ist zeitaufwendig, die Suche nach einfacheren Methoden darum verständlich. Eine solche verspricht der in St. Jude Aggregate implementierte automatische QuickOpt Algorithmus. In-vitro-Untersuchungen unter Einsatz eines elektronischen Herzsimulators sagten jedoch verschiedene ungünstige Eigenschaften vorher. Die eingeschränkte Nutzbarkeit ließ sich auch mit In-vitro-Vergleichen belegen.
Cardiac resynchronisation therapy (CRT) is a promising treatment option in patients with chronic heart failure. In this article the roles of semi-invasive esophageal left-heart electrocardiography and functional cardiac nuclear imaging in the field of CRT are highlighted, as the combination of both could be a favourable diagnostic approach in special cardiac situations. Also original esophageal left heart electrogram data of exemplary CRT patients is presented.
Introduction: Cardiac resynchronization therapy (CRT) with biventricular (BV) pacing is an established therapy for heart failure (HF) patients with ventricular desynchronisation and reduced left ventricular (LV) function. The aim of this study was to evaluate preejection period (PEP) and left ventricular ejection time (LVET) with transthoracic signal averaging impedance and electrocardiography in HF patients with and without BV pacing.
Methods: 10 HF patients (age 68.9 ± 8 years; 2 females, 9 males) with New York Heart Association (NYHA) class 2,9 ± 0.5, 30.9 ± 10.5 % LV ejection fraction and 159.4 ± 22.9 ms QRS duration were analysed with transthoracic impedance and electrocardiography (Cardioscreen Medis, Ilmenau, Germany) and novel National Intruments LabView 2009 signal averaging software. One day after BV pacing device implantation, AV and VV delays were optimized by transthoracic impedance cardiography and stroke volume (SV) and cardiac output (CO) were gained by Cardioscreen.
Results: Transthoracic impedance and electrocardiography AV and VV delay opimization was possible in all HF patients with BV pacing devices (n= 10). PEP was 154 ± 24ms without BV pacing and measured between onset of QRS in the surface electrocardiogram and onset of ventricular deflection in the impedance cardiogram. LVET was 342 ± 65ms without BV pacing and measured between onset and offset of ventricular deflection in the impedance cardiogram. The use of optimal AV and VV delay BV pacing resulted in improvement of SV from 64.1 ± 26.5 ml to 94.1 ± 33.96 ml (P < 0.05) and CO from 4.05 ± 1.36 l/min to 6.44 ± 1.56 l/min (P < 0.05).
Conclusion: PEP and LVET may be useful parameters of ventricular Desynchronisation. AV and VV delay optimized BV pacing improve SV and CO. Impedance and electrocardiography with LabView 2009 signal averaging may be a simple and useful technique to optimize CRT.
Introduction: Cardiac resynchronization therapy (CRT) with biventricular pacing is an established therapy for heart failure (HF) patients with sinus rhythm and ventricular desynchronisation. The aim of this study was to evaluate interventricular conduction delay (IVCD) and interatrial conduction delay (IACD) before and after premature ventricular contractions (PVC) in HF patients.
Methods: 13 HF patients (age 68 ± 10 years; 2 females, 11 males) with New York Heart Association functional class 2,8 ± 0.5, left ventricular (LV) ejection fraction 28,6 ± 12,6 %, 154 ± 25 ms QRS duration and PVC were analysed with bipolar transesophageal LV and left atrial electrogram recording and National Instruments LabView 2009 software. The level of significance of the t-test is 0,005.
Results: QRS duration increases during PVC (188 ± 32 ms) in comparison to the beat before (154 ± 25 ms, P = ) and after PVC (152 ± 25 ms,). IVCD increases during PVC up to 65 ± 33 ms (51 ± 19 ms in the beat before PVC, P=0.18, 49 ± 19 ms after PVC, P = 0.12). Intra-LV delay of 90 ± 16 ms is not different in the beat before PVC, 90 ± 14 ms during PVC (P = 0.99) and 94 ± 16 ms in the beat after PVC (P = 0.38). IACD is not significantly PVC influenced (67 ± 12 ms before PVC and 65 ± 13 ms after PVC, P = 0.71). Intra-left atrial conduction delay is not significant longer during PVC (57 ± 28 ms) than in the beat before PVC (54 ± 13 ms, P = 0.51) or after PVC (54 ± 8 ms, P = 0.45). PQ duration increases significantly after PVC (224 ± 95 ms) in comparison to the beat before PVC (176± 29 ms, P =...).
Conclusion: Transesophageal left cardiac electrocardiography with LabView 2009 software can improve evaluation of IVCD and IACD before, during and after PVC in HF patient selection for CRT.
Introduction: Cardiac resynchronization therapy (CRT) with biventricular pacing (BV) is an established therapy for heart failure (HF) patients (P) with ventricular desynchronisation, but not all patients improved clinically. Aim of this study was to evaluate electrical intra-left ventricular conduction delay (LVCD) and interventricular conduction delay (IVCD), to better select patients for CRT.
Methods: 65 HF patients (age 63.4 ± 10.6 years; 7 females, 58 males) with New York Heart Association (NYHA) class 3 ± 0.2, 24.4 ± 6.7 % left ventricular (LV) ejection fraction and 167.4 ± 35.6 ms QRSD were included. Esophageal TO Osypka focused hemispherical electrodes catheter was perorally applied in position of maximum LV deflection to measure LVCD between onset and offset of LV deflection and IVCD between earliest onset of QRS in the 12-channel surface ECG and onset of LV deflection in the focused bipolar transesophageal LV electrogram.
Results: There were 50 responders with LVCD of 76.5 ± 20.4 ms, IVCD of 80.5 ± 26.1 ms (P=0.34) and QRSD of 171 ± 37.7 ms. 15 non-responders had longer LVCD of 90 ± 28.5 ms (P = 0.045), shorter IVCD of 50.1 ± 29.1 ms (P < 0.001) and QRSD of 155.3 ± 25 ms (P=0.14). During 21.3 ± 20.3 month BV pacing follow-up, the responder`s NYHA classes improved from 3 ± 0.2 to 2. ± 0.3 (P < 0.001) whereas the non-responders NYHA classes did not improve from 3 ± 0.2 to 2.9 ± 0.3 (P = 0.43) during 15.7 ± 13.9 month BV pacing follow-up (53 Boston, 10 Medtronic and 2 St. Jude CRT devices).
Conclusion: Determination of electrical LVCD and IVCD by focused bipolar transesophageal LV electrogram recording may be an additional useful technique to improve patient selection for CRT.
Using guideline parameters for indication of cardiac resynchronization therapy (CRT), only about two thirds of the patients improve clinically. Unfortunately both, surface ECG and echo are uncertain to predict CRT response. To better characterize cardiac desynchronization in heart failure, interventricular (IVCD) and intra-leftventricular conduction delays (ILVCD) were measured by esophageal left ventricular electrogram (LVE). Recordings in 43 CRT patients (34m, 9f, age: 64.7 ± 9.5yrs) evidenced only weak correlation between IVCD and QRS of 0.53 and between ILVCD and QRS of 0.33. This demonstrated that QRS duration is not a reliable indicator of desynchronization. Therefore, the study resulted into development of LVE feature for a programmer with implant support device. It can be used interoperatively to guide the left ventricular electrode location in order to increase responder rate in CRT.
Cardiac resynchronization therapy (CRT) with biventricular pacing (BV) is an established therapy for heart failure (HF) patients with inter- and intraventricular conduction delay. The aim of this pilot study was to test the feasibility of both transesophageal measurement of left ventricular (LV) electrical delay and transesophageal LV pacing prior to implantation, to better select patients for CRT.