Refine
Year of publication
Document Type
- Conference Proceeding (58)
- Book (7)
- Article (unreviewed) (7)
- Article (reviewed) (5)
- Contribution to a Periodical (3)
- Part of a Book (1)
- Patent (1)
Conference Type
- Konferenz-Abstract (46)
- Konferenzartikel (10)
- Konferenz-Poster (1)
- Sonstiges (1)
Language
- English (63)
- German (18)
- Other language (1)
Is part of the Bibliography
- yes (82)
Keywords
- Abtragung (6)
- Defibrillator (5)
- Herz (5)
- Kardiale Resynchronisationstherapie (5)
- Elektrokardiogramm (4)
- Herzkrankheit (3)
- Herzschrittmacher (3)
- Hochfrequenztechnik (3)
- Katheter (3)
- Medizintechnik (3)
Institute
Open Access
- Open Access (36)
- Closed Access (27)
- Closed (4)
Die kardiale Resynchronisationstherapie ist ein großer Segen für viele Patienten mit einer Herzschwäche, die auf einen krankhaften Verlust der synchronen Kontraktion beider Herzkammern zurückzuführen ist. Warum einige von ihnen jedoch nicht darauf ansprechen, wird gegenwärtig erforscht. Als eine neue Methode mit dem Ziel der Effektivitätssteigerung dieser Therapie mit elektronischen Implantaten demonstrieren wir die Nutzbarkeit von durch eine Schluckelektrode aus der Speiseröhre abgeleiteten Elektrokardiogrammen.
Für den Erfolg einer kardialen Resynchronisationstherapie der Herzinsuffizienz mit biventrikulär stimulierenden Implantaten ist deren individuelle Programmierung von erfolgsbestimmender Bedeutung. Dies trifft insbesondere auf den Parameter AV-Delay zu. Dessen Optimierung durch Echo-Verfahren ist zeitaufwendig, die Suche nach einfacheren Methoden darum verständlich. Eine solche verspricht der in St. Jude Aggregate implementierte automatische QuickOpt Algorithmus. In-vitro-Untersuchungen unter Einsatz eines elektronischen Herzsimulators sagten jedoch verschiedene ungünstige Eigenschaften vorher. Die eingeschränkte Nutzbarkeit ließ sich auch mit In-vitro-Vergleichen belegen.
Cardiac resynchronisation therapy (CRT) is a promising treatment option in patients with chronic heart failure. In this article the roles of semi-invasive esophageal left-heart electrocardiography and functional cardiac nuclear imaging in the field of CRT are highlighted, as the combination of both could be a favourable diagnostic approach in special cardiac situations. Also original esophageal left heart electrogram data of exemplary CRT patients is presented.
Introduction: Cardiac resynchronisation therapy (CRT) with atrioventricular (AV) and interventricular (VV) optimized biventricular pacing (BV) is an established therapy for heart failure (HF) patients. The aim of the study was to compare AV and VV delay optimization with cardiac output (CO), cardiac index (CI), contractility index (IC) and acceleration index (ACI) impedance cardiographic (ICG) methods in CRT.
Methods: 15 HF patients (age 66 ± 10 years; 2 females, 13 males) in New York Heart Association (NYHA) class 3.1 ± 0.4, left ventricular (LV) ejection fraction 21.3 ± 7.8 % and QRS duration 176.1 ± 31.7 ms underwent AV and VV delay optimization with CO, CI, IC and ACI (Cardioscreen ®, Medis GmbH, Ilmenau, Germany) at different AV and VV delay BV pacing settings versus right ventricular (RV) pacing one day after implantation of a CRT device.
Results: Optimal AV delay after atrial sensing was 108.6 ± 20.3 ms (n=14) and optimal AV delay after atrial pacing 190 ± 14.1 ms (n=2) with AV delay range from 80 ms to 200 ms. Optimal VV delay was -12.3 ± 25.9 ms left ventricular before RV pacing. RV versus BV pacing mode resulted in improvement of CO from 3.4 ± 1.2 l/min to 4.4 ± 1.4 l/min (p<0.001), CI from 1.8 ± 0.64 l/min/m² to 2.4 ± 0.78 l/min/m² (p<0.001), IC from 0.028 ± 0.011 1/s to 0.036 ± 0.013 1/s (p<0.001) and ACI from 0.667 ± 0.227 1/s² to 0.834 ± 0.282 1/s² (p<0.002). During 34 ± 26 month BV pacing, the NYHA class improved from 3.1 ± 0.4 to 2.1 ± 0.4 (p<0.001).
Conclusion: AV and VV delay optimized BV pacing acutely improve hemodynamic parameters of transthoracic ICG and their NYHA class during long-term follow-up. ICG may be a simple and useful technique to optimize AV and VV delay in CRT.
Introduction: Cardiac resynchronisation therapy (CRT) with atrioventricular (AV) and interventricular (VV) optimized biventricular pacing (BV) is an established therapy for heart failure (HF) patients with electrical interventricular conduction delay (IVCD). The aim of the study was to compare AV and VV delay optimization with cardiac output (CO) and acceleration index (ACI) impedance cardiographic (ICG) methods.
Methods: HF patients with IVCD 86.8 ± 33 ms (n=15, age 66 ± 10 years; 2 females, 13 males), New York Heart Association (NYHA) functional class 3.1 ± 0.4, left ventricular (LV) ejection fraction 21.3 ± 7.8 % and QRS duration 176.1 ± 31.7 ms underwent AV and VV delay optimization with CO and ACI methods (Cardioscreen, Medis GmbH, Ilmenau, Germany). After evaluation of optimal AV delay, we evaluated optimal VV delay during simultaneous LV and right ventricular (RV) pacing (LV=RV), LV before RV pacing (LV-RV) and RV before LV pacing (RV-LV).
Results: Optimal VV delay was -12.3 ± 25.9 ms LV-RV pacing with VV delay range from -80 ms LV-RV pacing to +20 ms RV-LV pacing and RV=LV pacing. Optimal AV delay after atrial sensing was 108.6 ± 20.3 ms (n=14) and optimal AV delay after atrial pacing 190 ± 14.1 ms (n=2) with AV delay range from 80 ms to 200 ms. RV versus BV pacing mode resulted in improvement of CO from 3.4 ± 1.2 l/min to 4.4 ± 1.4 l/min (p<0.001) and ACI from 0.667 ± 0.227 1/s² to 0.834 ± 0.282 1/s² (p<0.002). During 34 ± 26 month BV pacing, the NYHA class improved from 3.1 ± 0.4 to 2.1 ± 0.4 (p<0.001).
Conclusion: AV and VV delay optimized BV pacing acutely improve ICG CO and ACI and their NYHA class during long-term follow-up. ICG may be a simple and useful technique to optimize AV and VV delay in CRT.
Introduction: Cardiac resynchronization therapy (CRT) with biventricular pacing is an established therapy for heart failure (HF) patients with sinus rhythm and ventricular desynchronisation. The aim of this study was to evaluate interventricular conduction delay (IVCD) and interatrial conduction delay (IACD) before and after premature ventricular contractions (PVC) in HF patients.
Methods: 13 HF patients (age 68 ± 10 years; 2 females, 11 males) with New York Heart Association functional class 2,8 ± 0.5, left ventricular (LV) ejection fraction 28,6 ± 12,6 %, 154 ± 25 ms QRS duration and PVC were analysed with bipolar transesophageal LV and left atrial electrogram recording and National Instruments LabView 2009 software. The level of significance of the t-test is 0,005.
Results: QRS duration increases during PVC (188 ± 32 ms) in comparison to the beat before (154 ± 25 ms, P = ) and after PVC (152 ± 25 ms,). IVCD increases during PVC up to 65 ± 33 ms (51 ± 19 ms in the beat before PVC, P=0.18, 49 ± 19 ms after PVC, P = 0.12). Intra-LV delay of 90 ± 16 ms is not different in the beat before PVC, 90 ± 14 ms during PVC (P = 0.99) and 94 ± 16 ms in the beat after PVC (P = 0.38). IACD is not significantly PVC influenced (67 ± 12 ms before PVC and 65 ± 13 ms after PVC, P = 0.71). Intra-left atrial conduction delay is not significant longer during PVC (57 ± 28 ms) than in the beat before PVC (54 ± 13 ms, P = 0.51) or after PVC (54 ± 8 ms, P = 0.45). PQ duration increases significantly after PVC (224 ± 95 ms) in comparison to the beat before PVC (176± 29 ms, P =...).
Conclusion: Transesophageal left cardiac electrocardiography with LabView 2009 software can improve evaluation of IVCD and IACD before, during and after PVC in HF patient selection for CRT.
Cardiac resynchronization therapy (CRT) with biventricular (BV) pacing is an established therapy in approximately two-thirds of symptomatic heart failure (HF) patients (P) with left bundle branch block (LBBB). The aim of this study was to evaluate left atrial (LA) conduction delay (LACD) and left ventricular (LV) conduction delay (LVCD) using pre-implantational transesophageal electrocardiography (ECG) in sinus rhythm (SR) CRT responder (R) and non-responder (NR).
Methods: SR HF P (n=52, age 63.6±10.4 years; 6 females, 46 males) with New York Heart Association (NYHA) class 3.0±0.2, 24.4±7.1 % LV ejection fraction and 171.2±37.6 ms QRS duration (QRSD) were measured by bipolar filtered transesophageal LA and LV ECG recording with hemispherical electrodes (HE) TO catheter (Osypka AG, Rheinfelden, Germany). LACD was measured between onset of P-wave in the surface ECG and onset of LA deflection in the LA ECG. LVCD was measured between onset of QRS in the surface ECG and onset of LV deflection in the LV ECG.
Results: There were 78.8 % SR CRT R (n=41) with 171.2±36.9 ms QRSD, 73.3±25.7 ms LACD, 80.0±24.0 ms LVCD and 2.3±0.5 QRSD-LVCD-ratio. SR CRT R QRSD correlated with LACD (r=0.688, P<0.001) and LVCD (r=0.699, P<0.001). There were 21.2 % SR CRT NR (n=11) with 153.4±22.4 ms QRSD (P=0.133), 69.8±24.8 ms LACD (n=6, P=0.767), 54.2±31.0 ms LVCD (P<0.0046) and 3.9±2.5 QRSD-LVCD-ratio (P<0.001). SR CRT NR QRSD not corre-lated with IACD (r=-0.218, P=0.678) and IVCD (r=0.042, P=0.903). During a 22.8±21.3 month CRT follow-up, the CRT R NYHA class improved from 3.1±0.3 to 1.9±0.3 (P<0.001). In CRT NR, NYHA class not improved (2.9±0.4 to 2.9±0.2, P=1) during 11.2±9.8 months BV pacing.
Conclusions: Transesophageal LA and LV ECG with HE can be utilized to analyse LACD and LVCD in HF P. Pre-implantational LVCD and QRSD-LVCD-ratio may be additional useful parameters to improve P selection for SR CRT.
Introduction: Cardiac resynchronization therapy (CRT) with biventricular pacing (BV) is an established therapy for heart failure (HF) patients (P) with ventricular desynchronisation, but not all patients improved clinically. Aim of this study was to evaluate electrical intra-left ventricular conduction delay (LVCD) and interventricular conduction delay (IVCD), to better select patients for CRT.
Methods: 65 HF patients (age 63.4 ± 10.6 years; 7 females, 58 males) with New York Heart Association (NYHA) class 3 ± 0.2, 24.4 ± 6.7 % left ventricular (LV) ejection fraction and 167.4 ± 35.6 ms QRSD were included. Esophageal TO Osypka focused hemispherical electrodes catheter was perorally applied in position of maximum LV deflection to measure LVCD between onset and offset of LV deflection and IVCD between earliest onset of QRS in the 12-channel surface ECG and onset of LV deflection in the focused bipolar transesophageal LV electrogram.
Results: There were 50 responders with LVCD of 76.5 ± 20.4 ms, IVCD of 80.5 ± 26.1 ms (P=0.34) and QRSD of 171 ± 37.7 ms. 15 non-responders had longer LVCD of 90 ± 28.5 ms (P = 0.045), shorter IVCD of 50.1 ± 29.1 ms (P < 0.001) and QRSD of 155.3 ± 25 ms (P=0.14). During 21.3 ± 20.3 month BV pacing follow-up, the responder`s NYHA classes improved from 3 ± 0.2 to 2. ± 0.3 (P < 0.001) whereas the non-responders NYHA classes did not improve from 3 ± 0.2 to 2.9 ± 0.3 (P = 0.43) during 15.7 ± 13.9 month BV pacing follow-up (53 Boston, 10 Medtronic and 2 St. Jude CRT devices).
Conclusion: Determination of electrical LVCD and IVCD by focused bipolar transesophageal LV electrogram recording may be an additional useful technique to improve patient selection for CRT.
Termination of atrial flutter (AFL) is not possible in all AFL patients (P) with transesophageal left atrial pacing (TLAP) with undirected electrical pacing field (EPF) and high atrial pacing threshold. Purpose of the study was to evaluate bipo-lar transesophageal left atrial electrocardiography (TLAE) and TLAP with directed EPF for evaluation and termination of AFL with and without simultaneous transesophageal echocardiography (TEE).
Methods: AFL P were analysed using either a TO electrode with one cylindrical (CE) and three or seven hemispherical electrodes (HE) or TEE electrode with four HE (Osypka, Rheinfelden, Germany). Burst TLAP cycle length was between 200msand 50ms.
Results: AFL cycle length was 233±30 ms with mean ventricular cycle length of 540±149 ms. AFL could be terminated by rapid bipolar TLAP with directed EPF using HE-HE and CE-HE with induction of atrial fibrillation (AF), induction of AF and spontaneous conversion to sinus rhythm and direct conversion to sinus rhythm. Directed EPF was simulated with finite element method.
Conclusions: AFL can be evaluated by bipolar TLAE. AFL can be terminated with rapid TLAP with directed EPF with and without simultaneous TEE. Bipolar TLAE with rapid TLAP is a safe, simple and useful method for evaluation and termination of AFL.