Refine
Document Type
- Article (reviewed) (9)
- Doctoral Thesis (1)
- Report (1)
Is part of the Bibliography
- yes (11)
Keywords
Institute
Open Access
- Closed Access (5)
- Open Access (4)
- Closed (2)
- Bronze (1)
- Gold (1)
- Hybrid (1)
Die vorliegende Arbeit beschäftigt sich mit dem Ermüdungs- und Schädigungsverhalten der in Verbrennungsmotoren eingesetzten Aluminiumgusslegierungen AlSi7Cu0,5Mg-T7 und AlSi12Cu3Ni2Mg-T7. Im Vergleich zur niederzyklischen sowie thermomechanischen Ermüdungsbeanspruchung führt die zusätzliche Überlagerung hochzyklischer Belastungen zu einer signifikanten Lebensdauerreduktion, die mit der Replika-Technik beobachteten Beschleunigung des Kurzrisswachstums erklärt werden kann. Frakto- und metallographische Untersuchungen zeigen, dass Rissinitiierung und Lebensdauerverhalten durch Gussdefekte sowie von belastungs- und temperaturabhängigen Schädigungsmechanismen bestimmt werden. Die Lebensdauern werden mit einem mechanismenbasierten Risswachstumsmodell vorhergesagt. Dazu wird der Schädigungsparameter DTMF,brittle entwickelt, der die charakteristischen Schädigungsmechanismen berücksichtigt. Die Legierung AlSi12Cu3Ni2Mg-T7 wird abschließend mit der Finite-Elemente-Methode und mikrostrukturbasierten Zellmodellen untersucht. Mit den Simulationsergebnissen können die experimentell beobachteten Schädigungsmechanismen fundiert gestützt werden.
In this work, plasticity-induced crack closure is studied under strain-controlled in-phase and out-of-phase thermomechanical fatigue (TMF) loading using the finite element method. The influence of the TMF phase, the applied strain ratio and the material model on the crack opening stress and the crack tip opening displacement is investigated. Therefore, a plane strain pennyshaped crack under large-scale yielding and four temperature-dependent viscoplasticity models with different numbers of backstresses with or without modification for an improved description of ratchetting are considered. The results show that crack closure is strongly determined by the TMF phase and not significantly affected by the strain ratio. Moreover, the plasticity model strongly influences the results, suggesting the need for the appropriate description of ratchetting effects and hardening behavior for large plastic strain ranges typically occurring at and around the crack tip.
In this paper fatigue crack closure under in-phase and out-of-phase thermomechanical fatigue (TMF) loading is studied using a temperature dependent strip yield model. It is shown that fatigue crack closure is strongly influenced by the phase relation between mechanical loading and temperature, if the temperature difference goes along with a temperature dependence of the yield stress. In order to demonstrate the effect of the temperature dependent yield stress, the influence of in-phase and out-of-phase TMF loading is studied for a polycrystalline nickel-base superalloy. By using a mechanism based lifetime model, implications for fatigue lives are demonstrated.
A crack opening stress equation for in-phase and out-of-phase thermomechanical fatigue loading
(2016)
In this paper, a crack opening stress equation for in-phase and out-of-phase thermomechanical fatigue (TMF) loading is proposed. The equation is derived from systematic calculations of the crack opening stress with a temperature dependent strip yield model for both plane stress and plane strain, different load ratios and different ratios of the temperature dependent yield stress in compression and tension. Using a load ratio scaled by the ratio of the yield stress in compression and tension, the equation accounts for the effect of the temperature dependent yield stress and the constraint on the crack opening stress. Based on the scaling relation established in this paper, Newman's crack opening stress equation for isothermal loading is enabled to predict the crack opening stress under TMF loading.
Detailed material investigations of the fatigue behavior of two cast aluminium alloys used in combustion engines are presented. The network of intermetallic phases of both aluminium alloys is characterized by means of detailed energy dispersive X-ray spectroscopy. In order to investigate the temperature-dependent fatigue behavior of the materials, tensile, low cycle and thermomechanical fatigue tests are performed over a wide temperature and loading range. The influence of the temperature dependence on the experimental results is discussed.
In this paper, the influence of the material hardening behavior on plasticity-induced fatigue crack closure is investigated for strain-controlled loading and fully plastic, large-scale yielding conditions by means of the finite element method. The strain amplitude and the strain ratio are varied for given Ramberg–Osgood material properties representing materials with different hardening behavior. The results show a pronounced influence of the hardening behavior on crack closure, while no significant effect is found from the considered strain amplitude and strain ratio. The effect of the hardening behavior on the crack opening stress cannot be described by existing crack opening stress equations.
In this paper, the time- and temperature-dependent cyclic ratchetting plasticity of the nickel-based alloy IN100 is experimentally investigated in strain-controlled experiments in the temperature range from 300 °C to 1050 °C. To this end, uniaxial material tests are performed with complex loading histories designed to activate phenomena as strain rate dependency, stress relaxation as well as the Bauschinger effect, cyclic hardening and softening, ratchetting and recovery from hardening. Plasticity models with different levels of complexity are presented that consider these phenomena, and a strategy is derived to determine the multitude of temperature-dependent material properties of the models in a step-by-step procedure based on sub-sets of experimental data of isothermal experiments. The models and the material properties are validated based on the results of non-isothermal experiments. A good description of the time- and temperature-dependent cyclic ratchetting plasticity of IN100 is obtained for isothermal as well as non-isothermal loading with models including ratchetting terms in the kinematic hardening law and the material properties obtained with the proposed strategy.
In this paper, the effect of the polycrystalline microstructure on crack-tip opening displacement and crack closure is investigated for microstructural short plane strain fatigue cracks using the finite-element method. To this end, cracks are introduced in synthetically generated microstructures and the grain properties are described using a single crystal plasticity model with kinematic hardening. Additionally, finite-element calculations without resolved microstructure and von Mises plasticity with kinematic hardening are performed. Fully-reversed strain-controlled cyclic loadings are considered under large-scale yielding conditions as typical for low-cycle fatigue problems. The crack opening stress and the cyclic crack-tip opening displacement are significantly influenced by the local grain structure. While the stabilized crack opening stresses obtained with the microstructure-based finite-element model are in good accordance with the von Mises plasticity results, the differences in the cyclic crack opening displacement are addressed to the asymmetric plastic strain fields in the plastic wake behind the crack-tip of the microstructure-based model. The asymmetric plastic strain fields result in discontinuous and premature contact of the crack flanks.
In the present paper, the influence of locally varying microstructures in case of an AlSi12 cast aluminium alloy is investigated by means of extracting the test pieces from different removal positions and low cycle fatigue tests. The temperature-dependent damage mechanisms, the material specific defect types, sizes and their influence on the fatigue properties of two AlSi7 and AlSi12 cast aluminium alloys are studied. An extreme value statistics methodology is applied to predict maximum defect sizes expected in a critical surface volume from two-dimensional metallographic micrographs. A damage map for the AlSi12 cast aluminium alloy is presented explaining the influence of the temperature- and load-dependent damage mechanisms on the observed isothermal and thermomechanical lifetime behavior.