Refine
Document Type
- Patent (4)
- Conference Proceeding (2)
- Article (unreviewed) (2)
- Article (reviewed) (1)
Conference Type
- Konferenzartikel (2)
Has Fulltext
- no (9)
Is part of the Bibliography
- yes (9)
Keywords
- Algorithmus (2)
- Klassifikation (2)
- Modulation (2)
- Überwachung (2)
- Aircraft (1)
- Attenuation (1)
- Computersysteme (1)
- Couplings (1)
- DVB-T (1)
- Datenerfassung (1)
Institute
Open Access
- Open Access (2)
- Bronze (1)
- Closed (1)
- Closed Access (1)
The invention concerns a method for spectrum monitoring a given frequency band, in which the spectral power density (S(f)) within the given frequency band is determined for all noise and signal components in the frequency band and, in order to detect the presence of one or more signals within the given frequency band, it is evaluated whether the spectral power density (S(f)) exceeds a threshold value (&lgr;). According to the invention, the threshold value (&lgr;) is calculated in accordance with an estimation of a distribution density (hR(S)) for the noise component of the spectral power density (S(f)) within the given frequency band and in accordance with a predefined value for the false-alarm probability (Pfa).
Die Erfindung betrifft ein Verfahren zum Spektrum-Monitoring eines vorgegebenen Frequenzbandes, bei dem die spektrale Leistungsdichte (S(f)) innerhalb des vorgegebenen Frequenzbandes für alle in dem Frequenzband enthaltenen Rausch- und Signalanteile bestimmt wird und für das Detektieren des Vorhandenseins eines oder mehrerer Signale innerhalb des vorgegebenen Frequenzbandes das Überschreiten eines Schwellenwertes (λ) durch die spektrale Leistungsdichte (S(f)) ausgewertet wird. Erfindungsgemäß wird der Schwellenwert (λ) abhängig von einer Schätzung einer Verteilungsdichte (hR(S)) für den Rauschanteil der spektralen Leistungsdichte (S(f)) innerhalb des vorgegebenen Frequenzbandes und einem vorgegebenen Wert für die Falschalarmwahrscheinlichkeit (Pfa) berechnet.
Signal detection and bandwidth estimation, also known as channel segmentation or information channel estimation, is a perpetual topic in communication systems. In the field of radio monitoring this issue is extremely challenging, since unforeseeable effects like fading occur accidentally. In addition, most radio monitoring devices normally scan a wide frequency range of several hundred MHz and have to detect a multitude of different signals, varying in signal power, bandwidth and spectral shape. Since narrowband sensing techniques cannot be directly applied, most radio monitoring devices use Nyquist wideband sensing to discover the huge frequency range. In practice, sensing is normally conducted by an FFT sweep spectrum analyzer that delivers the power spectral density (PSD) values to the radio monitoring system. The channel segmentation is the initial step of a comprehensive signal analysis in a radio monitoring system based on the PSD values. In this paper, a novel approach for channel segmentation is presented that is based on a quantization and a histogram evaluation of the measured PSD. It will be shown that only the combination of both evaluations will lead to an successful automatic channel segmentation. The performance of the proposed algorithm is shown in a real radio monitoring szenario.
Since cabling is very complex and often causes reliability problems in aircrafts new approaches which base on wireless technologies are highly desired. In this paper an innovative communication system is proposed that uses the essential elements of the airframe for data transfer. The communication is based on the wireless standard for Digital Video Broadcasting (DVB) and enables high data rates, which are required for the in-flight entertainment system as an example of use.
Die Erfindung betrifft ein Verfahren zur automatischen Klassifikation des Modulationsformats eines digital modulierten Signals, welches die empfangenen I/Q-Datenpunkte zuerst für jedes Modulationsformat mittels eines Clustering-Verfahrens ausgewertet, wobei nach Durchführung des Clustering-Verfahrens für jedes der Modulationsformate jeweils alle I/Q-Datenpunkte jeweils einem ermittelten Cluster-Schwerpunkt zugeordnet sind. Danach wird für jedes Modulationsformat jeweils der Wert einer Nutzenfunktion bestimmt, welche einen umso höheren (niedrigeren) Wert annimmt, je besser die einem Cluster-Schwerpunkt zugeordneten I/Q-Datenpunkte durch den Cluster-Schwerpunkt abgedeckt sind und je geringer die euklidischen Abstände der ermittelten Custer-Schwerpunkte von dem zugeordneten Konstellationspunkt sind. Es wird dann dasjenige Modulationsformat als das für das digital modulierte Signal zutreffende Modulationsformat angenommen, für welche die Nutzenfunktion den höchsten (niedrigsten) Wert annimmt.
The automatic classification of the modulation format of a detected signal is the intermediate step between signal detection and demodulation. If neither the transmitted data nor other signal parameters such as the frequency offset, phase offset and timing information are known, then automatic modulation classification (AMC) is a challenging task in radio monitoring systems. The approach of clustering algorithms is a new trend in AMC for digital modulations. A novel algorithm called `highest constellation pattern matching' is introduced to identify quadrature amplitude modulation and phase shift keying signals. The obtained simulation and measurement results outperform the existing algorithms for AMC based on clustering. Finally, it is shown that the proposed algorithm works in a real monitoring environment.