Refine
Document Type
Conference Type
Language
- English (5)
Has Fulltext
- no (5)
Keywords
- wastewater irrigation (2)
- IncP-1 plasmids (1)
- aminoglycoside resistance (1)
- antibiotic resistance (1)
- class 1 integrons (1)
- preferential flow (1)
- quaternary ammonium compound resistance (1)
- quinolone (1)
- resistance genes (1)
- sulphonamide (1)
Institute
Open Access
- Closed (3)
- Open Access (2)
- Bronze (1)
- Gold (1)
Antibiotic resistance genes in soil pose a potential risk for human health. They can enter the soil by irrigation with untreated or insufficiently treated waste water. We hypothesized that water flow paths trigger the formation of antibiotic resistance, since they transport antibiotics, multi-resistant bacteria and free resistance genes through the soil. To test this, we irrigated soil cores once or twice with waste water only, or with waste water added with sulfamethoxazole (SMX) and ciprofloxacin (CIP). The treatments also contained a dye to stain the water flow paths and allowed to sample these separately from unstained bulk soil. The fate of SMX and CIP was assessed by sorption experiments, leachate analyses and the quantification of total and extractable SMX and CIP in soil. The abundance of resistance genes to SMX (sul1 and sul2) and to CIP (qnrB and qnrS) was quantified by qPCR. The sorption of CIP was larger than the dye and SMX. Ciprofloxacin accumulated exclusively in the water flow paths but the resistance genes qnrB and qnrS were not detectable. The SMX concentration in the water flow paths doubled the concentration of the bulk soil, as did the abundance of sul genes, particularly sul1 gene. These results suggest that flow paths do function as hotspots for the accumulation of antibiotics and trigger the formation of resistance genes in soil. Their dissemination also depends on the mobility of the antibiotic, which was much larger for SMX than for CIP.
Long-term irrigation with untreated wastewater can lead to an accumulation of antibiotic substances and antibiotic resistance genes in soil. However, little is known so far about effects of wastewater, applied for decades, on the abundance of IncP-1 plasmids and class 1 integrons which may contribute to the accumulation and spread of resistance genes in the environment, and their correlation with heavy metal concentrations. Therefore, a chronosequence of soils that were irrigated with wastewater from 0 to 100 years was sampled in the Mezquital Valley in Mexico in the dry season. The total community DNA was extracted and the absolute and relative abundance (relative to 16S rRNA genes) of antibiotic resistance genes (tet(W), tet(Q), aadA), class 1 integrons (intI1), quaternary ammonium compound resistance genes (qacE+qacEΔ1) and IncP-1 plasmids (korB) were quantified by real-time PCR. Except for intI1 and qacE+qacEΔ1 the abundances of selected genes were below the detection limit in non-irrigated soil. Confirming the results of a previous study, the absolute abundance of 16S rRNA genes in the samples increased significantly over time (linear regression model, p < 0.05) suggesting an increase in bacterial biomass due to repeated irrigation with wastewater. Correspondingly, all tested antibiotic resistance genes as well as intI1 and korB significantly increased in abundance over the period of 100 years of irrigation. In parallel, concentrations of the heavy metals Zn, Cu, Pb, Ni, and Cr significantly increased. However, no significant positive correlations were observed between the relative abundance of selected genes and years of irrigation, indicating no enrichment in the soil bacterial community due to repeated wastewater irrigation or due to a potential co-selection by increasing concentrations of heavy metals.
Wastewater contains large amounts of pharmaceuticals, pathogens, and antimicrobial resistance determinants. Only a little is known about the dissemination of resistance determinants and changes in soil microbial communities affected by wastewater irrigation. Community DNAs from Mezquital Valley soils under irrigation with untreated wastewater for 0 to 100 years were analyzed by quantitative real-time PCR for the presence of sul genes, encoding resistance to sulfonamides. Amplicon sequencing of bacterial 16S rRNA genes from community DNAs from soils irrigated for 0, 8, 10, 85, and 100 years was performed and revealed a 14% increase of the relative abundance of Proteobacteria in rainy season soils and a 26.7% increase in dry season soils for soils irrigated for 100 years with wastewater. In particular, Gammaproteobacteria, including potential pathogens, such as Pseudomonas, Stenotrophomonas, and Acinetobacter spp., were found in wastewater-irrigated fields. 16S rRNA gene sequencing of 96 isolates from soils irrigated with wastewater for 100 years (48 from dry and 48 from rainy season soils) revealed that 46% were affiliated with the Gammaproteobacteria (mainly potentially pathogenic Stenotrophomonas strains) and 50% with the Bacilli, whereas all 96 isolates from rain-fed soils (48 from dry and 48 from rainy season soils) were affiliated with the Bacilli. Up to six types of antibiotic resistance were found in isolates from wastewater-irrigated soils; sulfamethoxazole resistance was the most abundant (33.3% of the isolates), followed by oxacillin resistance (21.9% of the isolates). In summary, we detected an increase of potentially harmful bacteria and a larger incidence of resistance determinants in wastewater-irrigated soils, which might result in health risks for farm workers and consumers of wastewater-irrigated crops.
Irrigation with wastewater releases pharmaceuticals, pathogenic bacteria, and resistance genes, but little is known about the accumulation of these contaminants in the environment when wastewater is applied for decades. We sampled a chronosequence of soils that were variously irrigated with wastewater from zero up to 100 years in the Mezquital Valley, Mexico, and investigated the accumulation of ciprofloxacin, enrofloxacin, sulfamethoxazole, trimethoprim, clarithromycin, carbamazepine, bezafibrate, naproxen, diclofenac, as well as the occurrence of Enterococcus spp., and sul and qnr resistance genes. Total concentrations of ciprofloxacin, sulfamethoxazole, and carbamazepine increased with irrigation duration reaching 95% of their upper limit of 1.4 µg/kg (ciprofloxacin), 4.3 µg/kg (sulfamethoxazole), and 5.4 µg/kg (carbamazepine) in soils irrigated for 19–28 years. Accumulation was soil-type-specific, with largest accumulation rates in Leptosols and no time-trend in Vertisols. Acidic pharmaceuticals (diclofenac, naproxen, bezafibrate) were not retained and thus did not accumulate in soils. We did not detect qnrA genes, but qnrS and qnrB genes were found in two of the irrigated soils. Relative concentrations of sul1 genes in irrigated soils were two orders of magnitude larger (3.15×10−3±0.22×10−3 copies/16S rDNA) than in non-irrigated soils (4.35×10−5±1.00×10−5 copies/16S rDNA), while those of sul2 exceeded the ones in non-irrigated soils still by a factor of 22 (6.61×10–4±0.59×10−4 versus 2.99×10−5±0.26×10−5 copies/16S rDNA). Absolute numbers of sul genes continued to increase with prolonging irrigation together with Enterococcus spp. 23S rDNA and total 16S rDNA contents. Increasing total concentrations of antibiotics in soil are not accompanied by increasing relative abundances of resistance genes. Nevertheless, wastewater irrigation enlarges the absolute concentration of resistance genes in soils due to a long-term increase in total microbial biomass.