Refine
Document Type
- Article (reviewed) (9)
- Conference Proceeding (1)
- Report (1)
Conference Type
- Konferenzartikel (1)
Is part of the Bibliography
- yes (11)
Keywords
- Thermomechanik (4)
- Ermüdung (2)
- Bruch (1)
- Crack closure (1)
- Crack opening stress (1)
- Cyclic J (1)
- Fatigue crack growth (1)
- Finite element simulation (1)
- Finite-Elemente-Methode (1)
- Gleichung (1)
Institute
Open Access
- Closed Access (8)
- Open Access (2)
- Closed (1)
- Gold (1)
In this paper fatigue crack closure under in-phase and out-of-phase thermomechanical fatigue (TMF) loading is studied using a temperature dependent strip yield model. It is shown that fatigue crack closure is strongly influenced by the phase relation between mechanical loading and temperature, if the temperature difference goes along with a temperature dependence of the yield stress. In order to demonstrate the effect of the temperature dependent yield stress, the influence of in-phase and out-of-phase TMF loading is studied for a polycrystalline nickel-base superalloy. By using a mechanism based lifetime model, implications for fatigue lives are demonstrated.
In this paper, the correlation of the cyclic J-integral, ΔJ, and the cyclic crack-tip opening displacement, ΔCTOD, is studied in the presence of crack closure to assess the question if ΔJ describes the crack-tip opening displacement in this case. To this end, a method is developed to evaluate ΔJ numerically within finite-element calculations. The method is validated for an elastic–plastic material that exhibits Masing behavior. Different strain ranges and strain ratios are considered under fully plastic cyclic conditions including crack closure. It is shown that the cyclic J-integral is the parameter to determine the cyclic crack-tip opening displacement even in cases where crack closure is present.
In the present paper, the influence of locally varying microstructures in case of an AlSi12 cast aluminium alloy is investigated by means of extracting the test pieces from different removal positions and low cycle fatigue tests. The temperature-dependent damage mechanisms, the material specific defect types, sizes and their influence on the fatigue properties of two AlSi7 and AlSi12 cast aluminium alloys are studied. An extreme value statistics methodology is applied to predict maximum defect sizes expected in a critical surface volume from two-dimensional metallographic micrographs. A damage map for the AlSi12 cast aluminium alloy is presented explaining the influence of the temperature- and load-dependent damage mechanisms on the observed isothermal and thermomechanical lifetime behavior.
Detailed material investigations of the fatigue behavior of two cast aluminium alloys used in combustion engines are presented. The network of intermetallic phases of both aluminium alloys is characterized by means of detailed energy dispersive X-ray spectroscopy. In order to investigate the temperature-dependent fatigue behavior of the materials, tensile, low cycle and thermomechanical fatigue tests are performed over a wide temperature and loading range. The influence of the temperature dependence on the experimental results is discussed.
In this work, the influence of superimposed high cycle fatigue on the LCF/HCF and TMF/HCF lifetime is investigated for two cast aluminium alloys of the types AlSi7 and AlSi12. The replica technique is used to examine the short crack growth behavior under pure LCF and LCF/HCF loading. The observed short crack growth evolution explains the observed lifetime reduction with increasing HCF amplitudes.
In this paper, the influence of the material hardening behavior on plasticity-induced fatigue crack closure is investigated for strain-controlled loading and fully plastic, large-scale yielding conditions by means of the finite element method. The strain amplitude and the strain ratio are varied for given Ramberg–Osgood material properties representing materials with different hardening behavior. The results show a pronounced influence of the hardening behavior on crack closure, while no significant effect is found from the considered strain amplitude and strain ratio. The effect of the hardening behavior on the crack opening stress cannot be described by existing crack opening stress equations.
In this paper the fatigue life of three cast iron materials, namely EN-GJS-700, EN-GJV-450 and EN-GJL-250, is predicted for combined thermomechanical fatigue and high cycle fatigue loading. To this end, a mechanism-based model is used, which is based on microcrack growth. The model considers crack growth due to low frequency loading (thermomechanical and low cycle fatigue) and due to high cycle fatigue. To determine the model parameters for the cast iron materials, fatigue tests are performed under combined loading and crack growth is measured at room temperature using the replica technique. Superimposed high cycle fatigue leads to an accelerated crack growth as soon as a critical crack length and thus the threshold stress intensity factor is exceeded. The model takes this effect into account and predicts the fatigue lives of all cast iron materials investigated under combined loadings very well.
The following contribution deals with the experimental investigation and theoretical evaluation of fatigue crack growth under isothermal and non-isothermal conditions at the nickel alloy 617. The microstructure and mechanical properties of alloy 617 are influenced significantly by the thermal heat treatment and the following thermal exposure in service. Hence, a solution annealed and a long-time service exposed material condition is studied. The crack growth measurement is carried out by using an alternate current potential drop system, which is integrated into a thermomechanical fatigue (TMF) test facility. The measured fatigue crack growth rates results in a function of material condition, temperature and load waveform. Furthermore, the results of the non-isothermal tests depend on the phase between thermal and mechanical load (in-phase, out-of-phase). A fracture mechanic based, time dependent model is upgraded by an approach to consider environmental effects, where almost all model parameters represent directly measureable values. A consistent description of all results and a good correlation with the experimental data can be achieved.
In this paper, the time- and temperature-dependent cyclic ratchetting plasticity of the nickel-based alloy IN100 is experimentally investigated in strain-controlled experiments in the temperature range from 300 °C to 1050 °C. To this end, uniaxial material tests are performed with complex loading histories designed to activate phenomena as strain rate dependency, stress relaxation as well as the Bauschinger effect, cyclic hardening and softening, ratchetting and recovery from hardening. Plasticity models with different levels of complexity are presented that consider these phenomena, and a strategy is derived to determine the multitude of temperature-dependent material properties of the models in a step-by-step procedure based on sub-sets of experimental data of isothermal experiments. The models and the material properties are validated based on the results of non-isothermal experiments. A good description of the time- and temperature-dependent cyclic ratchetting plasticity of IN100 is obtained for isothermal as well as non-isothermal loading with models including ratchetting terms in the kinematic hardening law and the material properties obtained with the proposed strategy.
A crack opening stress equation for in-phase and out-of-phase thermomechanical fatigue loading
(2016)
In this paper, a crack opening stress equation for in-phase and out-of-phase thermomechanical fatigue (TMF) loading is proposed. The equation is derived from systematic calculations of the crack opening stress with a temperature dependent strip yield model for both plane stress and plane strain, different load ratios and different ratios of the temperature dependent yield stress in compression and tension. Using a load ratio scaled by the ratio of the yield stress in compression and tension, the equation accounts for the effect of the temperature dependent yield stress and the constraint on the crack opening stress. Based on the scaling relation established in this paper, Newman's crack opening stress equation for isothermal loading is enabled to predict the crack opening stress under TMF loading.