Refine
Year of publication
Document Type
- Conference Proceeding (47)
- Contribution to a Periodical (13)
- Article (unreviewed) (4)
- Article (reviewed) (3)
- Book (3)
- Part of a Book (2)
- Image (1)
Conference Type
- Konferenzartikel (45)
- Sonstiges (2)
- Konferenz-Abstract (1)
- Konferenz-Poster (1)
Is part of the Bibliography
- yes (73)
Keywords
- Optik (7)
- Photonik (6)
- research-oriented education (5)
- Education in Optics and Photonics (4)
- Licht (4)
- optics and photonics (4)
- Education (3)
- VR (3)
- Virtuelle Realität (3)
- Astronomical events (2)
Institute
Open Access
- Open Access (37)
- Closed Access (19)
- Closed (5)
- Hybrid (5)
Live streaming of events over an IP network as a catalyst in media technology education and training
(2020)
The paper describes how students are involved in applied research when setting up the technology and running a live event. Real-time IP transmission in broadcast environments via fiber optics will become increasingly important in the future. Therefore, it is necessary to create a platform in this area where students can learn how to handle IP infrastructure and fiber optics. With this in mind, we have built a fully functional TV control room that is completely IP-based. The authors present the steps in the development of the project and show the advantages of the proposed digital solutions. The IP network proves to be a synergy between the involved teams: participants of the robot competition and the members of the media team. These results are presented in the paper. Our activities aim to awaken enthusiasm for research and technology in young people. Broadcasts of live events are a good opportunity for "hands on" activities.
Astronomical phenomena fascinate people from the very beginning of mankind up to today. In this paper the authors will present their experience with photography of astronomical events. The main focus will be on aurora borealis, comet Neowise, total lunar eclipses and how mobile devices open up new possibilities to observe the green flash. Our efforts were motivated by the great impact and high number of viewers of these events. Visitors from over a hundred countries watched our live broadcasts.
Furthermore, we report on our experiences with the photography of optical phenomena such as polar lights Fig. 1, comet Neowise with a Delta Aquariids meteor Fig. 11, and lunar eclipses Fig. 12.
This paper explains the realization of a concept for research-oriented photonics education. Using the example of the integration of an actual PhD project, it is shown how students are familiarized with the topic of research and scientific work in the first semesters. Typical research activities are included as essential parts of the learning process. Research should be made visible and tangible for the students. The authors will present all aspects of the learning environment, their impressions and experiences with the implemented scenario, as well as first evaluation results of the students.
The paper focuses on a numerical model which describes the radial temperature evolution in an optical fiber during the heating and cooling process according to the SP1 approximation. Based on this model, experimental methods for temperature measurement with optical fibers and for splice process optimization can be developed.
Not only is the number of new devices constantly increasing, but so is their application complexity and power. Most of their applications are in optics, photonics, acoustic and mobile devices. Working speed and functionality is achieved in most of media devices by strategic use of digital signal processors and microcontrollers of the new generation. Considering all these premises of media development dynamics, the authors present how to integrate microcontrollers and digital signal processors in the curricula of media technology lectures by using adequate content. This also includes interdisciplinary content that consists of using the acquired knowledge in media software. These entries offer a deeper understanding of photonics, acoustics and media engineering.
Member Lens
(2013)
Our university carries out various research projects. Among others, the project Schluckspecht is an interdisciplinary work on different ultra-efficient car concepts for international contests. Besides the engineering work, one part of the project deals with real-time data visualization. In order to increase the efficiency of the vehicle, an online monitoring of the runtime parameters is necessary. The driving parameters of the vehicle are transmitted to a processing station via a wireless network connection. We plan to use an augmented reality (AR) application to visualize different data on top of the view of the real car. By utilizing a mobile Android or iOS device a user can interactively view various real-time and statistical data. The car and its components are meant to be augmented by various additional information, whereby that information should appear at the correct position of the components. An engine e.g. could show the current rpm and consumption values. A battery on the other hand could show the current charge level. The goal of this paper is to evaluate different possible approaches, their suitability and to expand our application to other projects at our university.
We present our twenty years of experience in the live broadcasting of astronomical events, with the main focus on total lunar eclipses. Our efforts were motivated by the great impact and high number of viewers of these events. Visitors from over a hundred countries watched our live broadcasts. Our viewer record was set on July 27, 2018, with the live transmission of the total lunar eclipse from the Feldberg, the highest mountain in the Black Forest, attracting nearly half a million viewers in five hours.
An especially challenging activity was the live observing of the Mercury transit on 9 May 2016, which we presented as ‘live astronomy’ with hands-on telescope. The main goal of this event was to awake our students enthusiasm for optics and astronomy.
Furthermore, we report on our experiences with the photography of optical phenomena such as polar lights and green flash.
Art and Photonics
(2019)
In this paper we report on our continuous efforts to apply optics and photonics in art. This results in interdisciplinary projects which sometimes lead to concrete art installations.
We presented some of these projects at the UNESCO headquarters in Paris, at the opening ceremony of the International Year of Light and the inaugural ceremony of the International Day of Light.
Some newer projects, such as “A Maze: Ingenious Pipes” and “The Power of Your Eyes,” are also presented in this paper.
After the successful International Year of Light 2015, the idea of sustainability became increasingly imminent. After a preparatory year on 16 May 2018, the International Day of Light was launched for the first time. This event was celebrated with a public celebration in Paris at the UNESCO headquarters. In this paper we will present our projects dedicated to the International Day of Light in Paris. Together with a group of students from our university, we had the special opportunity to be integrated in the program of the opening ceremony at UNESCO in Paris. With our interdisciplinary projects we have tried to build a bridge between optics, photonics, art and media installations.
The authors explain a developed concept for research-oriented education in optics and photonics. It is presented which goals are to be achieved, which strategies have been developed and how these can be implemented in a blended learning scenario. The goal of our education is the best possible qualification of the students on the basis of a strong scientific and research-oriented education, which also includes the acquisition of important interdisciplinary competences. All phases of a research process are to be mapped in the learning process and offer students an insight into current research topics in optics and photonics.
Increased knowledge transfer through the integration of research projects into university teaching
(2019)
This paper describes the integration of the research project "Characterization of Color Vision using Spectroscopy and Nanotechnology: Application to Media Photonics" into an engineering course in the field of media technology. The aim is to develop the existing learning concept towards a more research-oriented teaching. Involving students in research projects as part of the learning process provides a deeper insight into current research topics and the key elements of scientific work. This makes it easier for students to recognize the importance of the acquired theoretical knowledge for the practice, which enables them to derive new insights of their own.