Refine
Document Type
Conference Type
- Konferenzartikel (5)
Language
- English (5)
Has Fulltext
- yes (5)
Is part of the Bibliography
- yes (5)
Keywords
- Sound Synthesis (3)
- Generative Art (2)
- Improvisation (2)
- Simulation-based Interaction (2)
- artificial dancer (2)
- dance and technology (2)
- deep learning (2)
- motion synthesis (2)
- Audiovisual Performance (1)
- AudiovisualPerformance (1)
Institute
Open Access
- Open Access (5)
- Bronze (4)
- Grün (1)
This paper describes the authors' first experiments in creating an artificial dancer whose movements are generated through a combination of algorithmic and interactive techniques with machine learning. This approach is inspired by the time honoured practice of puppeteering. In puppeteering, an articulated but inanimate object seemingly comes to live through the combined effects of a human controlling select limbs of a puppet while the rest of the puppet's body moves according to gravity and mechanics. In the approach described here, the puppet is a machine-learning-based artificial character that has been trained on motion capture recordings of a human dancer. A single limb of this character is controlled either manually or algorithmically while the machine-learning system takes over the role of physics in controlling the remainder of the character's body. But rather than imitating physics, the machine-learning system generates body movements that are reminiscent of the particular style and technique of the dancer who was originally recorded for acquiring training data. More specifically, the machine-learning system operates by searching for body movements that are not only similar to the training material but that it also considers compatible with the externally controlled limb. As a result, the character playing the role of a puppet is no longer passively responding to the puppeteer but makes movement decisions on its own. This form of puppeteering establishes a form of dialogue between puppeteer and puppet in which both improvise together, and in which the puppet exhibits some of the creative idiosyncrasies of the original human dancer.
Strings
(2020)
This article presents the currently ongoing development of an audiovisual performance work with the title Strings. This work provides an improvisation setting for a violinist, two laptop performers, and two generative systems. At the core of Strings lies an approach that establishes a strong correlation among all participants by means of a shared physical principle. The physical principle is that of a vibrating string. The article discusses how this principle is used in both natural and simulated forms as main interaction layer between all performers and as natural or generative principle for creating audio and video.
Strings P
(2021)
Strings is an audiovisual performance for an acoustic violin and two generative instruments, one for creating synthetic sounds and one for creating synthetic imagery. The three instruments are related to each other conceptually , technically, and aesthetically by sharing the same physical principle, that of a vibrating string. This submission continues the work the authors have previously published at xCoAx 2020. The current submission briefly summarizes the previous publication and then describes the changes that have been made to Strings. The P in the title emphasizes, that most of these changes have been informed by experiences collected during rehearsals (in German Proben). These changes have helped Strings to progress from a predominantly technical framework to a work that is ready for performance.
Generative machine learning models for creative purposes play an increasingly prominent role in the field of dance and technology. A particularly popular approach is the use of such models for generating synthetic motions. Such motions can either serve as source of ideation for choreographers or control an artificial dancer that acts as improvisation partner for human dancers. Several examples employ autoencoder-based deep-learning architectures that have been trained on motion capture recordings of human dancers. Synthetic motions are then generated by navigating the autoencoder's latent space. This paper proposes an alternative approach of using an autoencoder for creating synthetic motions. This approach controls the generation of synthetic motions on the level of the motion itself rather than its encoding. Two different methods are presented that follow this principle. Both methods are based on the interactive control of a single joint of an artificial dancer while the other joints remain under the control of the autoencoder. The first method combines the control of the orientation of a joint with iterative autoencoding. The second method combines the control of the target position of a joint with forward kinematics and the application of latent difference vectors. As illustrative example of an artistic application, this latter method is used for an artificial dancer that plays a digital instrument. The paper presents the implementation of these two methods and provides some preliminary results.
In 2015, Google engineer Alexander Mordvintsev presented DeepDream as technique to visualise the feature analysis capabilities of deep neural networks that have been trained on image classification tasks. For a brief moment, this technique enjoyed some popularity among scientists, artists, and the general public because of its capability to create seemingly hallucinatory synthetic images. But soon after, research moved on to generative models capable of producing more diverse and more realistic synthetic images. At the same time, the means of interaction with these models have shifted away from a direct manipulation of algorithmic properties towards a predominance of high level controls that obscure the model's internal working. In this paper, we present research that returns to DeepDream to assess its suit-ability as method for sound synthesis. We consider this research to be necessary for two reasons: it tackles a perceived lack of research on musical applications of DeepDream, and it addresses DeepDream's potential to combine data driven and algorithmic approaches. Our research includes a study of how the model architecture, choice of audio data-sets, and method of audio processing influence the acoustic characteristics of the synthesised sounds. We also look into the potential application of DeepDream in a live-performance setting. For this reason, the study limits itself to models consisting of small neural networks that process time-domain representations of audio. These models are resource-friendly enough to operate in real time. We hope that the results obtained so far highlight the attractiveness of Deep-Dream for musical approaches that combine algorithmic investigation with curiosity driven and open ended exploration.