Refine
Document Type
Conference Type
- Konferenz-Abstract (4)
- Konferenzartikel (1)
Language
- English (11)
Has Fulltext
- no (11)
Is part of the Bibliography
- yes (11)
Keywords
- Batterie (2)
- Lithiumbatterie (2)
- Elektrochemie (1)
- Elektrolyt (1)
- Lithium-Ionen-Akkumulator (1)
- Natrium-Ionen-Akkumulator (1)
- Reaktion (1)
- Reaktionsmechanismus (1)
- Redoxpotenzial (1)
- Spektroskopie (1)
Institute
Open Access
- Closed Access (5)
- Open Access (3)
- Bronze (1)
Lithium–oxygen cells with nonaqueous electrolyte show high overpotentials during charge, indicating asymmetric charge/discharge reaction mechanisms. We present a kinetic modeling and simulation study of the lithium–oxygen cell cycling behavior. The model includes a multistep reaction mechanism of the cell reaction (2Li + O2 ⇄ Li2O2) forming lithium peroxide by precipitation, coupled to a 1D porous-electrode transport model. We apply the model to study the asymmetric discharge/charge characteristics and analyze the influence of a redox mediator dissolved homogeneously in the liquid electrolyte. Model predictions are compared to experimental galvanostatic cycling data of cells without and with 2,2,6,6-tetramethylpiperidinyloxyl (TEMPO) as redox mediator. The predicted discharge behavior shows good agreement with the experimental results. A spatiotemporal analysis of species concentrations reveals inhomogeneous distributions of dissolved oxygen and reaction products within the cathode during discharge. The experimentally observed charge overpotentials as well as their reduction by using a redox mediator can be qualitatively reproduced with a partially irreversible reaction mechanism. However, the proposed models fail to reproduce the particular shape of the experimental charge curve with continuously increasing charge overpotential, which implies that part of the reaction mechanism is still open for investigation in future work.
Electrochemical impedance spectroscopy (EIS) is a widely-used diagnostic technique to characterize electrochemical processes. It is based on the dynamic analysis of two electrical observables, that is, current and voltage. Electrochemical cells with gaseous reactants or products (e.g., fuel cells, metal/air cells, electrolyzers) offer an additional observable, that is, the gas pressure. The dynamic coupling of current and/or voltage with gas pressure gives rise to a number of additional impedance definitions, for which we have introduced the term electrochemical pressure impedance spectroscopy (EPIS) [1,2]. EPIS shows a particular sensitivity towards transport processes of gas-phase or dissolved species, in particular, diffusion coefficients and transport pathway lengths. It is as such complementary to standard EIS, which is mainly sensitive towards electrochemical processes. This sensitivity can be exploited for model parameterization and validation. A general analysis of EPIS is presented, which shows the necessity of model-based interpretation of the complex EPIS shapes in the Nyquist plot (cf. Figure). We then present EPIS simulations for two different electrochemical cells: (1) a sodium/oxygen battery cell and (2) a hydrogen/air fuel cell. We use 1D or 2D electrochemical and transport models to simulate current excitation/pressure detection or pressure excitation/voltage detection. The results are compared to first EPIS experimental data available in literature [2,3].
Practical bottlenecks associated with commercialization of Lithium-air cells include capacity limitation and low cycling efficiency. The origin of such losses can be traced to complex electrochemical side reactions and reactant mass transport losses[1]. The efforts to minimize such losses include exploration of various electrolytes with additives[2], and cell component geometry and material design. Given the wide range of options for such materials, it is almost impractical to experimentally setup and characterize all those cells. Consequently, modeling and simulation studies are efficient alternatives to analyze spatially and temporally resolved cell behavior for various combinations of materials[3]. In this study, with the help of a two-dimensional multi physics model, we have focused on the effect of electrode and electrolyte interaction (electrochemistry), choice of electrolyte (species transport), and electrode geometry (electrode design) on the performance of a lithium-air button cell. Figure1a shows the schematics of the 2D axisymmetric computational domain. A comparative analysis of five different electrolytes was performed while focusing on the 2D distribution of local current density and the concentration of electro-chemically active species in the cell, that is, O2and Li+. Using two different cathode configurations, namely, flooded electrode and gas diffusion electrode (GDE)[4] at different cathode thickness, the effect of cell geometry and electrolyte saturation on cell performance was explored. Further, a detailed discussion on electrode volume utilization (cf. Figure1b) is presented via changes in the active volume of cathode that produces 90% of the total current with the cell current density for different combinations of electrolyte saturations and cathode thickness.
Pressure dynamics in metal-oxygen (metal-air) batteries: a case study on sodium superoxide cells
(2014)
Electrochemical reactions in metal–oxygen batteries come along with the consumption or release of gaseous oxygen. We present a novel methodology for investigating electrode reactions and transport phenomena in metal–oxygen batteries by measuring the pressure dynamics in an enclosed gas reservoir above the oxygen electrode. The methodology is exemplified by a room-temperature sodium–oxygen battery forming sodium superoxide (NaO2) in an electrolyte of diethylene glycol dimethyl ether (diglyme) and sodium trifluoromethanesulfonate (NaOSO2CF3, NaOTf). The experiments are supported by microkinetic simulations with a one-dimensional multiphysics continuum model. During galvanostatic cycling over 30 cycles, a constant oxygen consumption/release rate is observed upon discharge/charge. The number of transferred electrons per oxygen molecule is calculated to 1.01 ± 0.02 and 1.03 ± 0.02 for discharge and charge, respectively, confirming the nature of the oxygen reaction product as superoxide O2–. The same ratio is observed in cyclic voltammetry experiments with low scan rate (<1 mV/s). However, at higher scan rates, the ratio increases as a result of oxygen transport limitations in the electrolyte. We introduce electrochemical pressure impedance spectroscopy (EPIS) for simultaneously analyzing current, voltage, and pressure of electrochemical cells. Pressure recording significantly increases the sensitivity of impedance toward oxygen transport properties of the porous electrode systems. In addition, we report experimental data on the diffusion coefficient and solubility of oxygen in electrolyte solutions as important parameters for the microkinetic models.
Model-based analysis of Electrochemical Pressure Impedance Spectroscopy (EPIS) for PEM Fuel Cells
(2019)
Electrochemical impedance spectroscopy (EIS) is a widely-used diagnostic technique to characterize electrochemical processes. It is based on the dynamic analysis of two electrical observables, that is, current and voltage. Electrochemical cells with gaseous reactants or products, in particular fuel cells, offer an additional observable, that is, the gas pressure. The dynamic coupling of current or voltage with gas pressure gives rise to a number of additional impedance definitions, for which we have previously introduced the term electrochemical pressure impedance spectroscopy (EPIS) [1,2]. EPIS shows a particular sensitivity towards transport processes of gas-phase or dissolved species, in particular, diffusion coefficients and transport pathway lengths. It is as such complementary to standard EIS, which is mainly sensitive towards electrochemical processes. First EPIS experiments on PEM fuel cells have recently been shown [3].
We present a detailed modeling and simulation analysis of EPIS of a PEM fuel cell. We use a 1D+1D continuum model of a fuel/air channel pair with GDL and MEA. Backpressure is dynamically varied, and the resulting simulated oscillation in cell voltage is evaluated to yield the ▁Z_( V⁄p_ca ) EPIS signal. Results are obtained for different transport situations of the fuel cell, giving rise to very complex EPIS shapes in the Nyquist plot. This complexity shows the necessity of model-based interpretation of the complex EPIS shapes. Based on the simulation results, specific features in the EPIS spectra can be assigned to different transport domains (gas channel, GDL, membrane water transport).
Lithium-oxygen cells with organic electrolyte suffer high overpotentials during charge, indicating asymmetric charge/discharge reaction mechanisms. We present a multi-physics dynamic modeling and simulation study of the Li/O2 cell cycling behavior. We present three different multi-step mechanisms of the 2 Li + O2 ⇄ Li2O2 cell reaction, (A) a reversible 5-step mechanism, (B) a partially irreversible 6-step mechanism, and (C) a partially irreversible 8-step mechanism that includes reactions of a redox mediator. Model predictions are compared to experimental galvanostatic cycling data of Swagelok cells without and with 2,2,6,6-tetramethylpiperidinyloxyl (TEMPO) as redox mediator. All mechanisms are able to predict the discharge behavior in good agreement to the experimental results. The experimentally observed high charge overpotentials as well as their reduction by using a redox mediator can be qualitatively reproduced with the irreversible reaction mechanisms. However, the particular shape of the experimental charge curve with continuously increasing charge overpotential cannot be reproduced with the present mechanisms.
Seven cell design concepts for aqueous (alkaline) lithium–oxygen batteries are investigated using a multi-physics continuum model for predicting cell behavior and performance in terms of the specific energy and specific power. Two different silver-based cathode designs (a gas diffusion electrode and a flooded cathode) and three different separator designs (a porous separator, a stirred separator chamber, and a redox-flow separator) are compared. Cathode and separator thicknesses are varied over a wide range (50 μm–20 mm) in order to identify optimum configurations. All designs show a considerable capacity-rate effect due to spatiotemporally inhomogeneous precipitation of solid discharge product LiOH·H2O. In addition, a cell design with flooded cathode and redox-flow separator including oxygen uptake within the external tank is suggested. For this design, the model predicts specific power up to 33 W/kg and specific energy up to 570 Wh/kg (gravimetric values of discharged cell including all cell components and catholyte except housing and piping).
Electrochemical impedance spectroscopy (EIS) is a widely-used diagnostic technique to characterize electrochemical processes. It is based on the dynamic analysis of two electrical observables, that is, current and voltage. Electrochemical cells with gaseous reactants or products (e.g., fuel cells, metal/air cells, electrolyzers) offer an additional observable, that is, the gas pressure. The dynamic coupling of current and/or voltage with gas pressure gives rise to a number of additional impedance definitions, for which we use the term electrochemical pressure impedance. It also gives rise to different experimental probing approaches. In this article we present a model-based study of electrochemical pressure impedance spectroscopy (EPIS). Possible quantifications and realizations of EPIS are discussed. The study of generic cell geometries consisting of gas reservoir, diffusion layer(s) and electrochemically active layer(s) reveals distinct spiral-shaped features in the Nyquist plot. Using the example of a sodium/oxygen (Na/O2) cell, the dynamic spatiotemporal behavior of the state variables is quantified and interpreted. Results are compared to first experimental EPIS measurements by Hartmann et al. [J. Phys. Chem. C118, 1461, 2014]. A sensitivity analysis highlights the properties of EPIS with respect to geometric, transport, and kinetic parameters. We demonstrate that EPIS is sensitive to transport parameters that are not well-accessible with standard EIS.