Refine
Document Type
- Conference Proceeding (2)
- Article (reviewed) (1)
- Part of a Book (1)
Conference Type
- Konferenzartikel (2)
Language
- English (4)
Has Fulltext
- no (4)
Is part of the Bibliography
- yes (4)
Keywords
Institute
Open Access
- Closed Access (2)
- Open Access (2)
Economic growth and ecological problems motivate industries to apply eco-friendly technologies and equipment. However, environmental impact, followed by energy and material consumption still remain the main negative implications of the technological progress in process engineering. Based on extensive patent analysis, this paper assigns more than 250 identified eco-innovation problems and requirements to 14 general eco-categories with energy consumption and losses, air pollution, and acidification as top issues. It defines primary eco-engineering contradictions, in case eco-problems appear as negative side effects of the new technologies, and secondary eco-engineering contradictions, if eco-friendly solutions have new environmental drawbacks. The study conceptualizes a correlation matrix between the eco-requirements for prediction of typical eco-contradictions on example of processes involving solids handling. Finally, it summarizes major eco-innovation approaches including Process Intensification in process engineering, and chronologically reviews 66 papers on eco-innovation adapting TRIZ methodology. Based on analysis of 100 eco-patents, 58 process intensification technologies, and literature, the study identifies 20 universal TRIZ inventive principles and sub-principles that have a higher value for environmental innovation.
The research work analyses the relationship of 155 Process Intensification (PI) technologies to the components of the Theory of Inventive Problem Solving (TRIZ). It outlines TRIZ inventive principles frequently used in PI, and identifies opportunities for enhancing systematic innovation in process engineering by applying complementary TRIZ and PI. The study also proposes 70 additional inventive TRIZ sub-principles for the problems frequently encountered in process engineering, resulting in the advanced set of 160 inventive operators, assigned to the 40 TRIZ inventive principles. Finally, we analyse and discuss inventive principles used in 150 patent documents published in the last decade in the field of solid handling in the ceramic and pharmaceutical industries.
As engineering graduates and specialists frequently lack the advanced skills and knowledge required to run eco-innovation systematically, the paper proposes a new teaching method and appropriate learning materials in the field of eco-innovation and evaluates the learning experience and outcomes. This programme is aimed at strengthening student’s skills and motivation to identify and creatively overcome secondary eco-contradictions in case if additional environmental problems appears as negative side effects of eco-friendly solutions.
Based on a literature analysis and own investigations, authors propose to introduce a manageable number of eco-innovation tools into a standard one-semester design course in process engineering with particular focus on the identification of eco-problems in existing technologies, selection of the appropriate new process intensification technologies (knowledge-based engineering), and systematic ideation and problem solving (knowledge-based innovation and invention).
The proposed educational approach equips students with the advanced knowledge, skills and competences in the field of eco-innovation. Analysis of the student’s work allows one to recommend simple-to-use tools for a fast application in process engineering, such as process mapping, database of eco-friendly process intensification technologies, and up to 20 strongest inventive operators for solving of environmental problems. For the majority of students in the survey, even the small workload has strengthened their self-confidence and skills in eco-innovation
Process engineering industries are now facing growing economic pressure and societies' demands to improve their production technologies and equipment, making them more efficient and environmentally friendly. However unexpected additional technical and ecological drawbacks may appear as negative side effects of the new environmentally-friendly technologies. Thus, in their efforts to intensify upstream and downstream processes, industrial companies require a systematic aid to avoid compromising of ecological impact. The paper conceptualises a comprehensive approach for eco-innovation and eco- design in process engineering. The approach combines the advantages of Process Intensification as Knowledge-Based Engineering (KBE), inventive tools of Knowledge-Based Innovation (KBI), and main principles and best-practices of Eco-Design and Sustainable Manufacturing. It includes a correlation matrix for identification of eco-engineering contradictions and a process mapping technique for problem definition, database of Process Intensification methods and equipment, as well as a set of strongest inventive operators for eco-ideation.