Refine
Document Type
Conference Type
- Sonstiges (7)
- Konferenz-Abstract (1)
- Konferenzartikel (1)
Language
- English (9)
Has Fulltext
- no (9)
Is part of the Bibliography
- yes (9)
Institute
Open Access
- Open Access (9)
- Bronze (7)
- Grün (1)
This paper describes a thorough analysis of using PPO to learn kick behaviors with simulated NAO robots in the simspark environment. The analysis includes an investigation of the influence of PPO hyperparameters, network size, training setups and performance in real games. We believe to improve the state of the art mainly in four points: first, the kicks are learned with a toed version of the NAO robot, second, we improve the reliability with respect to kickable area and avoidance of falls, third, the kick can be parameterized with desired distance and direction as input to the deep network and fourth, the approach allows to integrate the learned behavior seamlessly into soccer games. The result is a significant improvement of the general level of play.
In this TDP we describe a new tool created for testing the strategy layer of our soccer playing agents. It is a complete 2D simulator that simulates the games based on the decisions of 22 agents. With this tool, debugging the decision and strategy layer of our agents is much more efficient than before due to various interaction methods and complete control over the simulation.
In the future, the tool could also serve as a measure to run simulations of game series much faster than with the 3D simulator. This way, the impact of different play strategies could be evaluated much faster than before.
This paper describes the new Sweaty II humanoid adult size robot trying to qualify for the RoboCup 2016 adult size humanoid competition. Based on experiences during RoboCup 2014, the Sweaty robot has been completely redesigned to a new robot Sweaty II. A major change is the use of linear actuators for the legs. Another characteristic is its indirect actuation by means of rods. This allows a variable transmission ratio depending on the angle of a joint.
After having described many different aspects of our team software in previous years, in this paper we take the freedom to describe the magmaChallenge framework provided by the magmaOffenburg team. The framework is used as a benchmark tool to run different challenges like the running challenge in 2014 or the kick accuracy challenge in 2015. This description should serve as a documentation to simplify the maintenance by the community and to add new benchmarks in the future.