Refine
Document Type
Conference Type
- Konferenzartikel (2)
Language
- English (8)
Is part of the Bibliography
- yes (8)
Keywords
Institute
Open Access
- Closed Access (5)
- Open Access (2)
Advances in printed electronics (PE) enables new applications, particularly in ultra-low-cost domains. However, achieving high-throughput printing processes and manufacturing yield is one of the major challenges in the large-scale integration of PE technology. In this article, we present a programmable printed circuit based on an efficient printed lookup table (pLUT) to address these challenges by combining the advantages of the high-throughput advanced printing and maskless point-of-use final configuration printing. We propose a novel pLUT design which is more efficient in PE realization compared to existing LUT designs. The proposed pLUT design is simulated, fabricated, and programmed as different logic functions with inkjet printed conductive ink to prove that it can realize digital circuit functionality with the use of programmability features. The measurements show that the fabricated LUT design is operable at 1 V.
Printed electronics (PE) enables disruptive applications in wearables, smart sensors, and healthcare since it provides mechanical flexibility, low cost, and on-demand fabrication. The progress in PE raises trust issues in the supply chain and vulnerability to reverse engineering (RE) attacks. Recently, RE attacks on PE circuits have been successfully performed, pointing out the need for countermeasures against RE, such as camouflaging. In this article, we propose a printed camouflaged logic cell that can be inserted into PE circuits to thwart RE. The proposed cell is based on three components achieved by changing the fabrication process that exploits the additive manufacturing feature of PE. These components are optically look-alike, while their electrical behaviors are different, functioning as a transistor, short, and open. The properties of the proposed cell and standard PE cells are compared in terms of voltage swing, delay, power consumption, and area. Moreover, the proposed camouflaged cell is fabricated and characterized to prove its functionality. Furthermore, numerous camouflaged components are fabricated, and their (in)distinguishability is assessed to validate their optical similarities based on the recent RE attacks on PE. The results show that the proposed cell is a promising candidate to be utilized in camouflaging PE circuits with negligible overhead.
Neuromorphic computing systems have demonstrated many advantages for popular classification problems with significantly less computational resources. We present in this paper the design, fabrication and training of a programmable neuromorphic circuit, which is based on printed electrolytegated field-effect transistor (EGFET). Based on printable neuron architecture involving several resistors and one transistor, the proposed circuit can realize multiply-add and activation functions. The functionality of the circuit, i.e. the weights of the neural network, can be set during a post-fabrication step in form of printing resistors to the crossbar. Besides the fabrication of a programmable neuron, we also provide a learning algorithm, tailored to the requirements of the technology and the proposed programmable neuron design, which is verified through simulations. The proposed neuromorphic circuit operates at 5V and occupies 385mm 2 of area.
Printed electrolyte-gated oxide electronics is an emerging electronic technology in the low voltage regime (≤1 V). Whereas in the past mainly dielectrics have been used for gating the transistors, many recent approaches employ the advantages of solution processable, solid polymer electrolytes, or ion gels that provide high gate capacitances produced by a Helmholtz double layer, allowing for low-voltage operation. Herein, with special focus on work performed at KIT recent advances in building electronic circuits based on indium oxide, n-type electrolyte-gated field-effect transistors (EGFETs) are reviewed. When integrated into ring oscillator circuits a digital performance ranging from 250 Hz at 1 V up to 1 kHz is achieved. Sequential circuits such as memory cells are also demonstrated. More complex circuits are feasible but remain challenging also because of the high variability of the printed devices. However, the device inherent variability can be even exploited in security circuits such as physically unclonable functions (PUFs), which output a reliable and unique, device specific, digital response signal. As an overall advantage of the technology all the presented circuits can operate at very low supply voltages (0.6 V), which is crucial for low-power printed electronics applications.
Printed electronics (PE) offers flexible, extremely low-cost, and on-demand hardware due to its additive manufacturing process, enabling emerging ultra-low-cost applications, including machine learning applications. However, large feature sizes in PE limit the complexity of a machine learning classifier (e.g., a neural network (NN)) in PE. Stochastic computing Neural Networks (SC-NNs) can reduce area in silicon technologies, but still require complex designs due to unique implementation tradeoffs in PE. In this paper, we propose a printed mixed-signal system, which substitutes complex and power-hungry conventional stochastic computing (SC) components by printed analog designs. The printed mixed-signal SC consumes only 35% of power consumption and requires only 25% of area compared to a conventional 4-bit NN implementation. We also show that the proposed mixed-signal SC-NN provides good accuracy for popular neural network classification problems. We consider this work as an important step towards the realization of printed SC-NN hardware for near-sensor-processing.
Emerging applications in soft robotics, wearables, smart consumer products or IoT-devices benefit from soft materials, flexible substrates in conjunction with electronic functionality. Due to high production costs and conformity restrictions, rigid silicon technologies do not meet application requirements in these new domains. However, whenever signal processing becomes too comprehensive, silicon technology must be used for the high-performance computing unit. At the same time, designing everything in flexible or printed electronics using conventional digital logic is not feasible yet due to the limitations of printed technologies in terms of performance, power and integration density. We propose to rather use the strengths of neuromorphic computing architectures consisting in their homogeneous topologies, few building blocks and analog signal processing to be mapped to an inkjet-printed hardware architecture. It has remained a challenge to demonstrate non-linear elements besides weighted aggregation. We demonstrate in this work printed hardware building blocks such as inverter-based comprehensive weight representation and resistive crossbars as well as printed transistor-based activation functions. In addition, we present a learning algorithm developed to train the proposed printed NCS architecture based on specific requirements and constraints of the technology.
In many application domains, in particular automotives, guaranteeing a very low failure rate is crucial to meet functional and safety standards. Especially, reliable operation of memory components such as SRAM cells is of essential importance. Due to aggressive technology downscaling, process and runtime variations significantly impact manufacturing yield as well as functionality. For this reason, a thorough memory failure rate assessment is imperative for correct circuit operation and yield improvement. In this regard, Monte Carlo simulations have been used as the conventional method to estimate the variability induced failure rate of memory components. However, Monte Carlo methods become infeasible when estimating rare events such as high-sigma failure rates. To this end, Importance Sampling methods have been proposed which reduce the number of required simulations substantially. However, existing methods still suffer from inaccuracies and high computational efforts, in particular for high-sigma problems. In this paper, we fill this gap by presenting an efficient mixture Importance Sampling approach based on Bayesian optimization, which deploys a surface model of the objective function to find the most probable failure points. Its advantages include constant complexity independent of the dimensions of design space, the potential to find the global extrema, and higher trustworthiness of the estimated failure rate by accurately exploring the design space. The approach is evaluated on a 6T-SRAM cell as well as a master-slave latch based on a 28nm FDSOI process. The results show an improvement in accuracy, resulting in up to 63× better accuracy in estimating failure rates compared to the best state-of-the-art solutions on a 28nm technology node.