Refine
Document Type
Conference Type
- Konferenzartikel (4)
Language
- German (5)
Has Fulltext
- no (5)
Is part of the Bibliography
- yes (5)
Institute
Open Access
- Closed Access (4)
- Closed (1)
Höchste Korrosionsschutzanforderungen sind für bestimmte technische Produkte insbesondere im Offshore Anwendungsbereich, nach ISO 20340, zwingend zu erfüllen, um deren Funktion und Betriebssicherheit dauerhaft gewährleisten zu können. Bis heute werden viele dieser Produkte am Ende ihrer Wertschöpfungskette nass überlackiert, mit einer kompletten Kunststoffhaut, der Korrosionsschutz-Lackschicht, überzogen. Diese Lackierung ist unter anderem deshalb erforderlich, weil es im klassischen Maschinenbau, insbesondere in der Antriebstechnik, viele mechanische Schnittstellen gibt, die vor der endgültigen Produktmontage quasi metallisch blank bleiben müssen, um den erforderlichen und definierten geometrischen Oberflächenzustand nach Form und Lage als Pass- und Fügefläche zu gewährleisten. Eine dieser mechanischen Schnittstellen sind Schraubenverbindungen. Mit dem derzeit gültigen Regelwerk ist die Berechnung einer Schraubenverbindung mit Lackschichten in den Trennfugen oder auf der Kopf- und Mutternauflagefläche nicht möglich, da lackierte Bauteile in der derzeit geltenden VDI-Richtlinie 2230 nicht berücksichtigt sind. Nach einem Praxisbericht anhand von Stellantrieben für Industriearmaturen über deren Umstellung von Nasslackierung des Gesamtproduktes auf Pulverbeschichtung von Einzelteilen wird die experimentelle Validierung der Betriebs- und Funktionssicherheit von Schraubenverbindungen mit lackierten Bauteilen vorgestellt. Daraus resultierend wurde im März 2014 an der Hochschule Offenburg ein Forschungsprojekt gestartet, dessen Ziel es ist für die oben genannte Problemstellung einen systematischen Lösungsansatz zu erarbeiten. Künftig soll es Entwicklungsingenieuren und Konstrukteuren bereits in der Phase von Entwicklung und Konstruktion möglich sein Schraubenverbindungen mit lackierten Bauteilen zuverlässig zu berechnen und auszulegen oder diese in der Prototypenphase zuverlässig zu testen. Die letzten beiden Abschnitte geben den Lösungsansatz und den aktuellen Stand der Forschung wider.
Moderne, intelligente Schraubmontagesysteme sind heutzutage in der Lage, streckgrenzengesteuerte Anziehverfahren für die prozesssichere Verschraubung zur Verfügung zu stellen. Insbesondere im Hochmomentenbereich bis 200.000 Nm ist diese Technologie erst seit kurzem etabliert. Entwicklungsbedarf besteht jedoch, sobald Bauteile im Kraftfluss liegen, die im Lastbereich ein nichtlineares Materialverhalten zeigen, wie zum Beispiel Korrosionsschutz-Lackschichten. Im Bereich der Schraubmontage gibt es nahezu unzählige Einflussfaktoren auf das Erreichen der angestrebten Montagevorspannkraft. Diese sind nicht mit vertretbarem Aufwand vollständig in einem entsprechenden Berechnungs- oder Simulations-Modell zur Auslegung von Schraubenverbindungen abbildbar. Ausserdem hat jede Applikation ihre spezifischen individuellen Eigenheiten. Modelle und Simulationen von Schraubenverbindungen sind daher nur mit eingeschränktem Maße für andere Applikationen wiederverwendbar. Zur Reduzierung von Entwicklungszeiten und Einhaltung der normativen Forderungen sollte zukünftig ein schneller Abgleich der Modelle mit den Daten der gesamten Schraubenverbindung aus realitätsnahen Versuchen angestrebt werden. Normative Forderungen wie beispielsweise die VDI/VDE 2645, welche eine Maschinenfähigkeitsuntersuchung der verwendeten Schraubtechnik zum Schraubfall vom Anwender fordert, zeigen unter anderem die Notwendigkeit auf. Idealerweise finden entsprechende Messungen unter realen Bedingungen statt. Die ermittelten Daten beinhalten nicht nur die Eigenschaftsdaten der Schrauben und die der Plattenbauteile, sondern die des ganzen Systems inkl. aller individuellen Einflussfaktoren bis hin zum Werkzeug selbst. Moderne, intelligente Schraubmontagesysteme können diese Aufgabe erfüllen. Rechtzeitig eingesetzt liefern sie die Daten zur Optimierung von Berechnung, Auslegung sowie Simulation von Schraubenverbindungen und sichern somit den Berechnungsprozess ab. Damit ist es zum einem möglich, bis an die Grenzen des technisch maximal Möglichen zu gehen, zum anderen im Echt-Test Schwachstellen der Auslegung oder Materialfehler bereits vor der Serieneinführung zu erkennen. Dieser Beitrag soll Ihnen vermitteln, dass Sie mit Hilfe intelligenter Schraubmontagesysteme die Berechnung, Auslegung und Simulation von Schraubenverbindungen mit dem Produktions- und Montageprozess abgleichen können, und dies nicht nur über den Anziehfaktor αa - dem sog. "Montage-Unsicherheitsbeiwert". Der konkrete Nutzen liegt in der Erweiterung der bisherigen Auslegung von Schraubenverbindungen mit Lackierungen im Hochmomentenbereich, die von einem breiten Anwenderkreis verwendet werden wird. Damit gelingt es, bereits in der frühen Entwicklungsphase vor Serienfreigabe übermäßige Vorspannkraftverluste zu vermeiden, was für zukünftige optimierte Berechnungen und Konstruktionen sehr wichtig ist.
Die Zuverlässigkeit und Betriebssicherheit von Feldgeräten ist für den sicheren und wirtschaftlichen Betrieb prozesstechnischer Anlagen unerlässlich. Ein entscheidender Faktor ist die Widerstandskraft der Geräte gegen die herrschenden Umgebungsbedingungen. Durch Korrosionsschäden hervorgerufene Anlagenstillstände zeigen, dass diesem Thema nicht immer die notwendige Aufmerksamkeit gewidmet wird, obwohl die korrosionsbedingten wirtschaftlichen Schäden immens sind. Wie man mit dem Thema Korrosionsschutz ernsthaft umgehen kann, zeigt dieser Beitrag am Beispiel elektrischer Stellantriebe.
Die Untersuchungen der Hochschule Offenburg zeigen, dass es durch organische Korrosionsschutzschichten im Kraftfluss von Schraubenverbindungen nicht zu einem verfrühten Abschalten der streckgrenzengesteuerten Schraubmontage kommt. Die fünf untersuchten Lacksysteme zeigten ein sehr unterschiedliches Reibverhalten, der Anzugsvorgang wurde jedoch zuverlässig bei Erreichen der Schraubenstreckgrenze beendet. Durch den ermittelten Drehmoment/Drehwinkelverlauf lässt sich das streckgrenzengesteuerte Anzugsverfahren als Analystetool einsetzen, wodurch für den jeweiligen Schraubfall auch Rückschlüsse auf anderen Anzugsverfahren getroffen werden können. Des Weiteren zeigte sich, dass Pulverlacksysteme widerstandsfähiger gegen die bei der Montage wirkenden Belastungen sind und eine Montage direkt auf Lack ermöglichen können.