Refine
Year of publication
Document Type
- Conference Proceeding (34)
- Contribution to a Periodical (14)
- Patent (13)
- Article (unreviewed) (8)
- Article (reviewed) (4)
- Book (1)
- Part of a Book (1)
Conference Type
- Konferenzartikel (32)
- Konferenz-Poster (1)
- Sonstiges (1)
Language
- German (46)
- English (28)
- Other language (1)
Is part of the Bibliography
- yes (75)
Keywords
- Elektronische Pille (5)
- Analyse (4)
- Medizintechnik (4)
- Feuchtigkeit (3)
- Teststreifen (3)
- CCD-Bildwandler (2)
- Mikroelektronik (2)
- Personal Computer (2)
- Prozessor (2)
- RFID (2)
Institute
Open Access
- Open Access (50)
- Bronze (32)
- Closed (13)
- Closed Access (7)
- Gold (1)
The authors present an abiotically catalyzed glucose fuel cell and demonstrate its application as energy harvesting power source for a cardiac pacemaker. This is enabled by an optimized DC-DC converter operating at 40 % conversion efficiency, which surpasses commercial low-power DC-DC converters. The required fuel cell surface area can thus be reduced from about 125 cm2 to 18 cm2, which would allow for its direct integration onto the pacemaker casing.
Vorrichtung (2) zur Analyse von Urin, umfassend: – eine Zuführ- und Abführeinrichtung (7), welche zur Zuführung einer bestimmten Urinmenge in eine wenigstens einen Analysebereich (8) aufweisende Analysekammer (9) eines Urinteststreifens (10) und zur Abführung einer bestimmten Urinmenge aus einer wenigstens einen Analysebereich (8) aufweisenden Analysekammer (9) eines Urinteststreifens (10) eingerichtet ist, wobei die Zuführ- und Abführeinrichtung (7) wenigstens ein bewegbar gelagertes Zuführ- und/oder Abführelement (28, 29) zum Zuführen einer bestimmten Urinmenge in einen Zuführbereich (33) der Analysekammer (9) des Urinteststreifens (10) und/oder zum Abführen einer bestimmten Urinmenge aus einem Abführbereich (34) der Analysekammer (9) des Urinteststreifens (10) aufweist, und – eine Erfassungseinrichtung (11), welche zur Erfassung einer zumindest abschnittsweisen Änderung wenigstens eines optisch erfassbaren Parameters, welcher sich in Abhängigkeit der Zusammensetzung einer diesen kontaktierenden Urinmenge optisch erfassbar verändert, des oder eines entsprechenden Analysebereichs (8) des oder eines entsprechenden Urinteststreifens (10) sowie zur Erzeugung einer Erfassungsinformation, welche wenigstens einen optisch erfassten Parameter des oder eines entsprechenden Analysebereichs (8) oder eine Änderung eines solchen beschreibt, eingerichtet ist.
Vorrichtung (2) zur Analyse von Urin, umfassend: – eine Zuführ- und Abführeinrichtung (7), welche zur Zuführung einer bestimmten Urinmenge in eine wenigstens einen Analysebereich (8) aufweisende Analysekammer (9) eines Urinteststreifens (10) und zur Abführung einer bestimmten Urinmenge aus einer wenigstens einen Analysebereich (8) aufweisenden Analysekammer (9) eines Urinteststreifens (10) eingerichtet ist, wobei die Zuführ- und Abführeinrichtung (7) wenigstens ein bewegbar gelagertes Zuführ- und/oder Abführelement (28, 29) zum Zuführen einer bestimmten Urinmenge in einen Zuführbereich (33) der Analysekammer (9) des Urinteststreifens (10) und/oder zum Abführen einer bestimmten Urinmenge aus einem Abführbereich (34) der Analysekammer (9) des Urinteststreifens (10) aufweist, und – eine Erfassungseinrichtung (11), welche zur Erfassung einer zumindest abschnittsweisen Änderung wenigstens eines optisch erfassbaren Parameters, welcher sich in Abhängigkeit der Zusammensetzung einer diesen kontaktierenden Urinmenge optisch erfassbar verändert, des oder eines entsprechenden Analysebereichs (8) des oder eines entsprechenden Urinteststreifens (10) sowie zur Erzeugung einer Erfassungsinformation, welche wenigstens einen optisch erfassten Parameter des oder eines entsprechenden Analysebereichs (8) oder eine Änderung eines solchen beschreibt, eingerichtet ist.
Vorrichtung (2) zur Analyse von Urin, umfassend: – eine Zuführ- und Abführeinrichtung (7), welche zur Zuführung einer bestimmten Urinmenge in eine wenigstens einen Analysebereich (8) aufweisende Analysekammer (9) eines Urinteststreifens (10) und zur Abführung einer bestimmten Urinmenge aus einer wenigstens einen Analysebereich (8) aufweisenden Analysekammer (9) eines Urinteststreifens (10) eingerichtet ist, wobei die Zuführ- und Abführeinrichtung (7) wenigstens ein bewegbar gelagertes Zuführ- und/oder Abführelement (28, 29) zum Zuführen einer bestimmten Urinmenge in einen Zuführbereich (33) der Analysekammer (9) des Urinteststreifens (10) und/oder zum Abführen einer bestimmten Urinmenge aus einem Abführbereich (34) der Analysekammer (9) des Urinteststreifens (10) aufweist, und – eine Erfassungseinrichtung (11), welche zur Erfassung einer zumindest abschnittsweisen Änderung wenigstens eines optisch erfassbaren Parameters, welcher sich in Abhängigkeit der Zusammensetzung einer diesen kontaktierenden Urinmenge optisch erfassbar verändert, des oder eines entsprechenden Analysebereichs (8) des oder eines entsprechenden Urinteststreifens (10) sowie zur Erzeugung einer Erfassungsinformation, welche wenigstens einen optisch erfassten Parameter des oder eines entsprechenden Analysebereichs (8) oder eine Änderung eines solchen beschreibt, eingerichtet ist.
Zum ersten Mal gibt es mit dem kooperativen Promotionskolleg über „Kleinskalige erneuerbare Energiesysteme – KleE“ für hochqualifizierte Absolventen der Hochschule Offenburg die Möglichkeit zur Promotion innerhalb des engen wissenschaftlichen Austauschs eines Doktorandenkollegs. Betreut werden sie gemeinsam von je einem Universitätsprofessor und einem Hochschulprofessor. In Zusammenarbeit mit der Albert-Ludwigs-Universität Freiburg, dem Zentrum für Erneuerbare Energien (ZEE), und den Fraunhofer-Instituten für Solare Energiesysteme (ISE) sowie für Physikalische Messtechnik (IPM) forschen 15 Doktorandinnen und Doktoranden im Promotionskolleg KleE an interdisziplinären Forschungsthemen.
Am Institut für Angewandte Forschung wird seit Jahren eine Mikroprozessorfamilie unter dem Kurznamen SIRIUS entwickelt, die inzwischen in verschiedenen Applikationen eingesetzt wird und in hohem Maß nun auch kommerziell interessant wird. Im Mittelpunkt der Arbeiten des letzten Jahrs stand die Ausreifung der Strukturen, wobei zum erstenMal auf Benchmarks zurückgegriffen werden konnte, die einen direkten Vergleich der Leistungsfähigkeit von Prozessoren ermöglicht. Als Benchmark wurde in einer Master-Arbeit von Herrn Roth der Core-Mark Benchmark für unsere SIRIUS-Architektur übersetzt, der einen direkten Vergleich mit sehr leistungsfähigen Boliden wie der ARM-Cortex-Architektur aber auch klassischen kommerziellen Produkten von Renesas wie auch von ATMEL ermöglicht.
Das Institut für Angewandte Forschung arbeitet seit Jahren an RFID-Applikationen unter Verwendung des Protokolls nach ISO15693-Standard. Wir entwickeln in dem Zusammenhang sowohl Frontendelektronik als auch Reader, die es ermöglichen, diese Tags auszulesen. Projekte der vergangenen Jahre waren sowohl SEAGsens als auch medizintechnische Anwendungen unterschiedlichster Art.
In Zusammenarbeit mit der Firma Schweizer Electronic AG, Schramberg, wurde seit 2007 ein aktives Sensorsystem mit Datenloggerfunktion entwickelt. Das System verfügt über eine RFID-Systemschnittstelle nach dem ISO15693-Standard und kann bis zu 30.000 Messwerte speichern. Im Jahr 2009 wurde im Auftrag der SIEMENS AG, Österreich, die Firmware des Systems nach neuen Spezifikationen und Ideen in wesentlichen Teilen neu entwickelt.
Design of a Programmable Passive SoC for Biomedical Applications Using RFID ISO 15693/NFC5 Interface
(2018)
Low power, low cost inductively powered passive biotelemetry system involving fully customized RFID/NFC interface base SoC has gained popularity in the last decades. However, most of the SoCs developed are application specific and lacks either on-chip computational or sensor readout capability. In this paper, we present design details of a programmable passive SoC in compliance with ISO 15693/NFC5 standard for biomedical applications. The integrated system consists of a 32-bit microcontroller, a sensor readout circuit, a 12-bit SAR type ADC, 16 kB RAM, 16 kB ROM and other digital peripherals. The design is implemented in a 0.18 µm CMOS technology and used a die area of 1.52 mm × 3.24 mm. The simulated maximum power consumption of the analog block is 592 µW. The number of external components required by the SoC is limited to an external memory device, sensors, antenna and some passive components. The external memory device contains the application specific firmware. Based on the application, the firmware can be modified accordingly. The SoC design is suitable for medical implants to measure physiological parameters like temperature, pressure or ECG. As an application example, the authors have proposed a bioimplant to measure arterial blood pressure for patients suffering from Peripheral Artery Disease (PAD).
An Ultra-Low-Power RFID/NFC Frontend IC Using 0.18 μm CMOS Technology for Passive Tag Applications
(2018)
Battery-less passive sensor tags based on RFID or NFC technology have achieved much popularity in recent times. Passive tags are widely used for various applications like inventory control or in biotelemetry. In this paper, we present a new RFID/NFC frontend IC (integrated circuit) for 13.56 MHz passive tag applications. The design of the frontend IC is compatible with the standard ISO 15693/NFC 5. The paper discusses the analog design part in details with a brief overview of the digital interface and some of the critical measured parameters. A novel approach is adopted for the demodulator design, to demodulate the 10% ASK (amplitude shift keying) signal. The demodulator circuit consists of a comparator designed with a preset offset voltage. The comparator circuit design is discussed in detail. The power consumption of the bandgap reference circuit is used as the load for the envelope detection of the ASK modulated signal. The sub-threshold operation and low-supply-voltage are used extensively in the analog design—to keep the power consumption low. The IC was fabricated using 0.18 μm CMOS technology in a die area of 1.5 mm × 1.5 mm and an effective area of 0.7 mm2. The minimum supply voltage desired is 1.2 V, for which the total power consumption is 107 μW. The analog part of the design consumes only 36 μW, which is low in comparison to other contemporary passive tags ICs. Eventually, a passive tag is developed using the frontend IC, a microcontroller, a temperature and a pressure sensor. A smart NFC device is used to readout the sensor data from the tag employing an Android-based application software. The measurement results demonstrate the full passive operational capability. The IC is suitable for low-power and low-cost industrial or biomedical battery-less sensor applications. A figure-of-merit (FOM) is proposed in this paper which is taken as a reference for comparison with other related state-of-the-art researches.
Das Institut für Angewandte Forschung (IAF) der Hochschule Offenburg ist seit mehr als 3 Jahren an der Entwicklung einer elektronischen Pille engagiert, die die bisher übliche chemische Freisetzung von Medikamenten im Darm durch eine gesteuerte, über Telemetrie ausgelöste Freisetzung ersetzen soll Damit lassen sich Therapien durchführen und Medikamente verwenden, die in der klassischen Form nicht möglich sind.
BioPower
(2009)
Das Projekt BioPower ist eine Kooperation des Instituts für Angewandte Forschung (IAF) der Hochschule Offenburg mit dem Institut für Mikrosystemtechnik (IMTEK) der Universität Freiburg. Es handelt sich um den Versuch, die im Körper vorhandenen Energiequellen sozusagen direkt anzuzapfen, um sie für technische Zwecke zu nutzen. Von den vielen bestehenden Möglichkeiten konzentriert sich die Forschung hier auf die Nutzung der Glukose im Blut, die auch sonst als Energieträger zur Versorgung der Zellen im Körper dient.
ASIC-Bausteine enthalten heute für die Umsetzung von programmierbaren Funktionen sogenannte Prozessorkerne, die in einer Entwurfssprache wie VHDL oder Verilog beschrieben und mit Synthesetools auf eine gewünschte Zieltechnologie abgebildet werden können. An der Hochschule Offenburg wurde in den letzten Jahren der Prozessorkern SIRIUS entworfen [1] und inzwischen so weit ausgereift, dass er in unterschiedlichen Projekten erfolgreich implementiert werden kann. In der Zieltechnologie AMI 0,35 ist er z.B. in dem ePillen-Chip enthalten. Als Softcore kann er auch mit gleicher Funktionalität in einem FPGA implementiert werden.
Im Rahmen einer Zusammenarbeit mit der Schweizer Elektronik AG wurde seit 2007 ein aktives Sensorsystem mit Datenloggerfunktion (Abbildung 1.4-1) entwickelt, das über eine nach ISOStandard ISO 15693 ausgelegte Funkschnittstelle verfügt. Über das System wurde bereits im Forschungsbericht 2008 berichtet.
Das Institut für Angewandte Forschung (IAF) der Hochschule Offenburg arbeitet seit mehreren Jahren an der Entwicklung der elektronischen Pille, mit der Medikamente im Darm telemetrisch gesteuert auf Kommando freigesetzt werden können. Das System benötigt dazu eine hochminiaturisierte Elektronik, die in Form eines integrierten Schaltkreises (ASIC) entwickelt wurde.
Im Institut für Angewandte Forschung (IAF) der Hochschule Offenburg, im ASIC-Design-Center wird seit Jahren an einem Softcore, genannt SIRIUS (Small Imprint Risc for ubi quitions System), entwickelt, der sich inzwischen in drei Familienmitglieder aufteilt: SIRIUS-TINY mit einer internen 16-bit-Struktur und einem 16-bit-Adressraum als kleinen Bruder, dem SIRIUS-JANUS mit einer internen 32-bit-Struktur, aber einem 16-bit-Bus-System, das es erlaubt den 32-bit-Adressraum zu nutzen, und dem großen Bruder, dem SIRIUS-HULK der sowohl intern als auch extern über eine 32-bit-Struktur verfügt, zusätzlich einen 32-bit-Divider enthält und auf den Speicher über einen dualen Cache zugreift.
Mice and rats make up 95% of all animals used in medical research and drug discovery and development. Monitoring of physiological functions such as ECG, blood pressure, and body temperature over the entire period of an experiment is often required. Restraining of the animals in order to obtain this data can cause great inconvenience. The use of telemetric systems solves this problem and provides more reliable results. However, these devices are mostly equipped with batteries, which limit the time of operation or they use passive power supplies, which affects the operating range. The semi-passive telemetric implant being presented is based on RFID technology and overcomes these obstacles. The device is inductively powered using the magnetic field of a common RFID reader device underneath the cage, but is also able to operate for several hours autonomously. Being independent from the battery capacity, it is possible to use the implant over a long period of time or to re-use the device several times in different animals, thus avoiding the disadvantages of existing systems and reducing the costs of purchase and refurbishment.