Refine
Document Type
Conference Type
- Konferenzartikel (16)
- Sonstiges (2)
Is part of the Bibliography
- yes (20)
Keywords
- Applikation (2)
- Datensicherung (2)
- Kommunikation (2)
- Substrates (2)
- energy harvesting (2)
- Antenna measurements (1)
- Antennas (1)
- BLE (1)
- Benchmark (1)
- Biomedizin (1)
Institute
Open Access
- Closed Access (9)
- Open Access (8)
- Bronze (5)
- Closed (3)
The demand of wireless solutions in industrial applications increases since the early nineties. This trend is not only ongoing, it is further pushed by developments in the area of software stacks like the latest Bluetooth Low Energy Stack. It is also pushed by new chip-designs and powerful and highly integrated electronic hardware. The acceptance of wireless technologies as a possible solution for industrial applications, has overcome the entry barrier [1]. The first step to see wireless as standard for many industrial applications is almost accomplished. Nevertheless there is nearly none acceptance of wireless technology for Safety applications. One highly challenging and demanding requirement is still unsolved: The aspect safety and robustness. Those topics have been addressed in many cases but always in a similar manner. WirelessHART as an example addresses this topic with redundant so called multiple propagation paths and frequency hopping to handle with interferences and loss of network participants. So far the pure peer to peer link is rarely investigated and there are less safety solutions available. One product called LoRa™ can be seen as one possible solution to address this lack of safety within wireless links. This paper focuses on the safety performance evaluation of a modem-chip-design. The use of diverse and redundant wireless technologies like LoRa can lead to an increase acceptance of wireless in safety applications. Many measurements in real industrial application have been carried out to be able to benchmark the new chip in terms of the safety aspects. The content of this research results can help to raise the level of confidence in wireless. In this paper, the term “safety” is used for data transmission reliability.
In this paper an RFID/NFC (ISO 15693 standard) based inductively powered passive SoC (system on chip) for biomedical applications is presented. A brief overview of the system design, layout techniques and verification method is dis-cussed here. The SoC includes an integrated 32 bit microcontroller, sensor interface circuit, analog to digital converter, integrated RAM, ROM and some other peripherals required for the complete passive operation. The entire chip is realized in CMOS 0.18 μm technology with a chip area of 1.52mm x 3.24 mm.
This paper presents a practice and science orientated education approach for freshman students of interdisciplinary bachelor engineering degree programs. This approach is meant to enhance the motivation and success of freshman students during their whole study. The education approach is called Fit4PracSis (Fit for Practice and Sciences) It was started to develop, set up and establish an education approach, which is building a relationship to students' future profession and to scientific working during the introductory study phase. The freshman students will be trained early in important skills, which are necessary for achieving the final degree successfully and handling of future business and research activities.
Implementierung von Softcore-Prozessoren und/oder weiteren IPs (Intellectual Property) in FPGAs
(2018)
Die zunehmende Integration von kompletten Systemen auf einem Chip (System-on-Chip, SoC) erfordert auch immer die Integration einer Recheneinheit bzw. eines Prozessorkerns. Möchte man insbesondere Low-Power-SoC-Systeme entwickeln, z.B. drahtlose Sensor-SoC-Systeme für Anwendungen im Rahmen von Industrie 4.0, ist die Implementierung eines solchen Prozessorkerns mit hohen Herausforderungen verbunden. Prinzipiell können hierfür verschiedene Ansätze verfolgt werden, nämlich die Implementierung einer Hardcore Prozessor-IP (IP = Intellectual Property) oder einer Softcore-Prozessor-IP. Im vorliegenden Beitrag wird zunächst auf den derzeitigen Stand der Technik verfügbarer Hardcore- oder Softcore-Prozessoren unter den Randbedingungen der Low-Power-Anforderungen und der weiten Verbreitung des Cores in industriellen Anwendungen eingegangen. Schließlich werden die Ergebnisse der Implementierung und Evaluierung eines derzeit frei verfügbaren 16-bit MSP430-kompatiblen Softcore Prozessors auf einem Altera-Cyclon-FPGA vorgestellt. Aus den Ergebnissen wird ein entsprechendes Fazit für die Implementierung von Low-Power-SoC-Systeme gegeben.
Der Entwurf und die Realisierung gedruckter Schaltungen oder Elektronikkomponenten stellt ein intensives Thema der Forschung dar. Forschungsgruppen beschäftigen sich zunehmend mit der Entwicklung von gedruckten Energy Harvestern, weil diese kostengünstig und einfach herstellbar sind. Das Energy Harvesting (EH) oder auch das ”Mikro Energy Harvesting“ (MEH) bezeichnet die Gewinnung von elektrischer Energie aus der Umgebung, um elektronische Verbraucher zu versorgen, kontinuierliche Leistungen zu erzeugen, das System energieeffizienter zu machen, sowie die Energiespeicherung im Mikrowattbereich zu gewährleisten. Energy Harvesting-Systeme stellen eine Alternative gegenüber der Energieversorgung autarker Low-Power-Elektronik mit Batterien dar. Das Energiemanagement solcher EH-Systeme ist jedoch eine Herausforderung aufgrund der Energieverfügbarkeit und der im Zeitablauf nicht konstanten Verlustleistung. Dieser Beitrag gibt einen Überblick über die derzeit existierenden ultra low-power Energiemanagement Schaltungen für Energy Harvester. Dabei wird insbesondere der Fokus auf gedruckte Energy Harvester gelegt. Es soll aufgezeigt werden, welche Aspekte der vorgestellten Energieversorgungsschaltungen bei der Entwicklung eines Energieversorgungschips für gedruckte Energy Harvester berüucksichtigt werden sollen.
This paper is discussing the development of a wireless Indoor Smart Gardening System with the focus on energy autonomous working. The Smart Gardening System, which is presented in this paper consists of a network of energy autonomous wireless sensor nodes which are used for monitoring important plant parameters like air temperature, soil moisture, pressure or humidity and in future to control an actuator for the plant irrigation and to measure further parameter as light and fertilizer level. Solar energy harvesting is used for powering the wireless nodes without the usage of a battery. Comparable Smart Gardening Systems are usually battery-powered. Furthermore, the overall Smart Gardening System consists of a battery powered gateway based on a Raspberry Pi 3 system, which controls the wireless nodes and collects their sensor data. The gateway is able to send the information to an internet server application and via Wi-Fi to mobile devices. Particularly the architecture of the energy autonomous wireless nodes will be considered because fully energy autonomous wireless networks could not be implemented without special concepts for the energy supply and architecture of the wireless nodes.
During the last ten years the development of wireless sensing applications has become more and more attractive. A major reason for this trend is the large quantity of available wireless technologies. The progressing demand on wireless technologies is mainly driven through development from the industrial wireless sensors market. Especially requirements like low energy consumption, a resource saving simple protocol stack and short timing delays between different states of the wireless transceivers are very important for wireless sensors. Bluetooth Low Energy (BLE) is a rather new wireless standard in addition to the traditional Bluetooth standard (Basis rate and enhanced data rate, BR/EDR) [1]. The BLE will completely fulfill these fundamental requirements. First BLE transceiver chips and modules are available and have been tested and implemented in products. In this paper the performance analysis results of a BLE sensor system which is based on the TI transceiver CC2540F [5] will be presented. The results can be taken for further important investigations like lifetime calculations or BLE simulation models.
Elektronische Türschilder zur Darstellung von Informationen sind insbesondere in öffentlichen Gebäuden zwischenzeitlich weit verbreitet. Die Varianz dieser elektronischen Türschilder reicht vom Tablet-basierten Türschild bis hin zum PC-basierten Türschild mit externem Bildschirm. Zumeist werden die Systeme mit 230 V betrieben. Bei einer großen Summe von Türschildern in öffentlichen Gebäuden kann dies zu einem signifikanten Umsatz an Energie führen. Im Rahmen dieses Papers wird die Entwicklung eines energieautarken arbeiten Türschildes vorgestellt, bei dem ein E-Paper-Display zum Einsatz kommt. Das Türschild lässt sich per Smartphone-App und NFC-Schnittstelle konfigurieren. Es wird insbesondere auf das Low-Power-Hardware-Design der Elektronik und energetische Aspekte eingegangen.