Refine
Year of publication
- 2020 (2)
Document Type
Language
- English (2)
Has Fulltext
- no (2)
Is part of the Bibliography
- yes (2)
Keywords
- copper oxide (1)
- diode modeling (1)
- indium oxide (1)
- nickel oxide (1)
- oxide electronics (1)
- pn-diode (1)
- printed electronics (1)
Open Access
- Closed Access (2)
Electrolyte-gated thin-film transistors (EGTs) with indium oxide channel, and expected lifetime of three months, enable low-voltage operation (~1 V) in the field of printed electronics (PEs). The channel width of our printed EGTs is varied between 200 and 1000 μm, whereas a channel length between 10 and 100 μm is used. Due to the lack of uniform performance p-type metal oxide semiconductors, n-type EGTs and passive elements are used to design circuits. For logic gates, transistor-resistor logic has been employed so far, but depletion and enhancement-mode EGTs in a transistor-transistor logic boost the circuit performance in terms of delay and signal swing. In this article, the threshold voltage of the EGT, which determines the operation mode, is tuned through sizing of the EGTs channel geometry. The feasibility of both transistor operation modes is demonstrated for logic gates and ring oscillators. An inverter operating at a supply voltage of 1 V shows a maximum gain of 9.6 and a propagation delay time of 0.7 ms, which represents an improvement of ~ 2x for the gain and oscillation frequency, in comparison with the resistor-transistor logic design. Moreover, the power consumption is reduced by 6x.
Oxide semiconductors have the potential to increase the performance of inkjet printed microelectronic devices such as field-effect transistors (FETs), due to their high electron mobilities. Typical metal oxides are n-type semiconductors, while p-type oxides, although realizable, exhibit lower carriermobilities. Therefore, the circuit design based on oxide semiconductors is mostly in n-type logic only. Here we present an inkjet printed pn-diode based on p- and n-type oxide semiconductors.Copper oxide or nickel oxide is used as p-typesemiconductor whereas n-typesemiconductor is realized with indium oxide. Themeasurements show that the pn-diodes operate in the voltage window typical for printed electronics and the emission coefficient is 1.505 and 2.199 for the copper oxide based and nickel oxidebased pn-diode, respectively.Furthermore, a pn-diode model is developed and integrable into a circuit simulator.