Refine
Document Type
- Patent (3)
- Article (reviewed) (1)
- Conference Proceeding (1)
- Report (1)
Conference Type
- Konferenzartikel (1)
Is part of the Bibliography
- yes (6)
Keywords
- Biologische Methanisierung (5)
- Biological methanation (3)
- Verfahrenstechnik (3)
- Methanisierung (2)
- biogas (1)
- biological ex situ methanation (1)
- energy storage (1)
- hydrogen (1)
- membrane bioreactor (1)
- power to gas (1)
Institute
Open Access
- Open Access (5)
- Bronze (4)
- Closed (1)
- Gold (1)
Continuous Biological Ex Situ Methanation of CO2 and H2 in a Novel Inverse Membrane Reactor (IMR)
(2024)
A promising approach for carbon dioxide (CO2) valorization and storing excess electricity is the biological methanation of hydrogen and carbon dioxide to methane. The primary challenge here is to supply sufficient quantities of dissolved hydrogen. The newly developed Inverse Membrane Reactor (IMR) allows for the spatial separation of the required reactant gases, hydrogen (H2) and carbon dioxide (CO2), and the degassing area for methane (CH4) output through commercially available ultrafiltration membranes, enabling a reactor design as a closed circuit for continuous methane production. In addition, the Inverse Membrane Reactor (IMR) facilitates the utilization of hydraulic pressure to enhance hydrogen (H2) input. One of the process’s advantages is the potential to utilize both carbon dioxide (CO2) from conventional biogas and CO2-rich industrial waste gas streams. An outstanding result from investigating the IMR revealed that, employing the membrane gassing concept, methane concentrations of over 90 vol.% could be consistently achieved through flexible gas input over a one-year test series. Following startup, only three supplemental nutrient additions were required in addition to hydrogen (H2) and carbon dioxide (CO2), which served as energy and carbon sources, respectively. The maximum achieved methane formation rate specific to membrane area was 87.7 LN of methane per m2 of membrane area per day at a product gas composition of 94 vol.% methane, 2 vol.% H2, and 4 vol.% CO2.
Im Zuge der Machbarkeitsstudie „BubbleMeth“ (FKZ BWFE310091) wurde die Machbarkeit der biologischen Methanisierung in einem neukonzipierten innovativen Pilot-Reaktor, basierend auf einer Gegenstromblasensäule mit separatem Entgasungs-Reaktor, sowohl für den Betrieb in der biologischen in-situ als auch der ex-situ Methanisierung demonstriert.
Die Pilot-Anlage besteht aus einer Gegenstromblasensäule und einem separaten Entgasungs-Reaktor und wurde an der Hochschule Offenburg geplant und gebaut. Die beiden Reaktor-Säulen haben jeweils eine Höhe von 10 m, einen Säulendurchmesser von 0,3 m und ein Gesamtreaktionsvolumen von etwa 1,1 m3. Der Gaseintrag erfolgt über Sinterplatten am Boden der Gegenstromblasensäule. In dieser Begasungssäule strömt die Flüssigkeit in entgegengesetzter Richtung zu den aufsteigenden Gasblasen und reichert sich durch den am Säulenfuß vorliegenden hydraulischen Druck zunehmend mit gelöstem Gas an. Die Säule, in die das Eduktgas am Säulenboden eingetragen wird, ist in Abbildung 1 auf der rechten Seite dargestellt und befindet sich auf der Saugseite einer Pumpe. Bei einer etwa 9,5 m hohen Wassersäule erhöht sich der Absolutdruck am Säulenboden auf etwa 1,95 bar, womit sich die Löslichkeit einer beliebigen Gaskomponente im Vergleich zum Atmosphärendruck bei konstanter Temperatur im Gleichgewicht gemäß dem Henry’schen Gesetz näherungsweise verdoppelt. Dieser Effekt wird genutzt, um die Verfügbarkeit von gelöstem Wasserstoff für die bei der biologischen Methanisierung katalytisch wirkenden hydrogenothrophen Archaeen zu erhöhen. Durch die Zirkulation der Flüssigkeit und den damit erreichten Druckwechsel wird auf der Seite des Entgasungs-Reaktors ein Ausgasen der relativ zum Atmosphärendruck übersättigten Gaskomponente ermöglicht. Durch die Zirkulation der Flüssigkeit über zwei Säulen wird außerdem die räumliche Trennung des Eduktgaseintrages und der Produktgasabtrennung erreicht.
Die in-situ Methanisierung wurde in der Machbarkeitsstudie bis zu einer organischen Beladungsrate von 0,94 kg m-3 d-1 realisiert. Die erwartete Biogasbildungsrate (BGBR) bei vollständiger Umsetzung des Glucose/Fructose-Substrates zu Methan und CO2 lag bei ca. 0,686 m3 m-3 d-1. Die gemessene BGBR erreichte 0,61 ± 0,03 m3 m-3 d-1. Die geringe Abweichung kann auf eine zusätzliche Nutzung des Substrates für den Erhaltungsstoffwechsel des gesamten biologischen Systems zurückgeführt werden. Der maximale volumetrische H2-Eintrag betrug während der in-situ Methanisierung 0,785 m3 m-3 d-1 und ist dabei bezogen auf das gesamte Reaktionsvolumen von ca. 1,1 m3 in beiden Reaktorkolonnen. Das eingesetzte H2:CO2-Verhältnis lag bei 2,3, um einen vollständigen CO2-Umsatz und eine damit verbundene Verschiebung des pH-Wertes in den alkalischen Bereich bei der in-situ Methanisierung zu vermeiden. Die Produktgaszusammensetzung lag stabil bei ca. 80 Vol.% CH4, 18 Vol.% CO2 und geringen Mengen an Stickstoff, die im Wesentlichen aus der manuellen Entnahme der Gasproben resultieren, und entsprach der erwarteten Zusammensetzung bei dem vorgegebenen H2:CO2-Verhältnis.
Im Anschluss an die Untersuchungsphase der in-situ Methanisierung wurde der Prozess auf die ex-situ Methanisierung umgestellt. Dazu wurde die OLR schrittweise reduziert und gleichzeitig der Eintrag von CO2 aus einer Druckgasflasche erhöht. Die ex-situ Methanisierung wurde im Rahmen der Machbarkeitsstudie bis zu einem volumenspezifischen CO2-Eintrag bezogen auf das Gesamtreaktionsvolumen von 1,1 m3 von 0,563 m3 CO2 m-3 d-1 durchgeführt.
Der maximale volumetrische H2-Eintrag betrug während der ex-situ Methanisierung 2,168 m3 m-3 d-1. Das eingesetzte H2:CO2-Verhältnis lag bei 3,6 bis 3,9. Die Produktgaszusammensetzung lag stabil bei ca. 91 Vol.% CH4, 8 Vol.% CO2 und geringen Mengen an Stickstoff, und entsprach der erwarteten Zusammensetzung bei dem vorgegebenen H2:CO2-Verhältnis.
Besonders bemerkenswert war, dass sowohl bei der in-situ als auch der ex-situ Methanisierung und den jeweils in der Machbarkeitsstudie eingesetzten maximalen volumetrischen H2-Einträge weder im austretenden Produktgas am Entgasungsreaktor noch im rezirkulierten Gas am Kopf des Begasungsreaktors Wasserstoff nachzuweisen war. Damit besteht großes Potenzial für eine weitere Steigerung der Methanbildungsrate. Aus diesem Grund sollen die Arbeiten zur biologischen Methanisierung in einem Innovationsprojekt fortgeführt werden. Die Anlage soll hinsichtlich ihrer Eignung in einer relevanten Einsatzumgebung zur Methanisierung von in Biogas enthaltenem CO2-bewertet werden. Dazu soll die Anlage außerdem mit einem preiswerten alkalischen Elektrolyseur kombiniert werden, um das Verfahren so kostengünstig wie möglich zu gestalten. Dieser Elektrolyseur soll in Anlehnung an die fluktuierende Energiebereitstellung Erneuerbarer Energien zyklisch betrieben werden und dabei vor allem zu Zeiten günstiger Spotmarktpreise in Betrieb sein.
Die Erfindung betrifft eine Vorrichtung zur biologischen Methanisierung von CO und/oder CO2 mittels methanogener Mikroorganismen durch Umsetzung von H2 und CO und/oder CO2, die eine Begasungskolonne und eine Entgasungskolonne, jeweils mit
einer Bodenseite und einer der Bodenseite gegenüberliegenden oberen Seite, ein in der Begasungskolonne und der Entgasungskolonne bereitgestelltes Medium mit methanogenen Mikroorganismen, eine Zuführeinrichtung zum Zuführen eines H2 enthaltenden Gases in das Medium der Begasungskolonne, wobei die Zuführeinrichtung im Bereich der Bodenseite der Begasungskolonne angeordnet ist, eine Abführeinrichtung zum Abführen eines CH4 enthaltenden Gases aus der Entgasungskolonne, eine Verbindungsleitung zwischen Begasungskolonne und Entgasungskolonne im Bereich der Bodenseiten, eine Pumpe zum Überführen von Medium über die Verbindungsleitung von der Begasungskolonne in die Entgasungskolonne, und eine Rückführleitung zwischen der Begasungskolonne und der Entgasungskolonne im Bereich der oberen Seiten zum Rückführen von Medium
aus der Entgasungskolonne in die Begasungskolonne aufweist. Die Erfindung betrifft auch ein Verfahren zur biologischen Methanisierung von CO und/oder CO2 in einer Vorrichtung mittels methanogener Mikroorganismen als Teil eines in der Vorrichtung bereitgestellten Mediums, wobei das Medium in einem Kreislauf über eine Begasungskolonne und eine Entgasungskolonne geführt wird, wobei die Kolonnen jeweils über eine Verbindungsleitung im Bereich ihrer Bodenseiten und über eine Rückführleitung im Bereich der den Bodenseiten gegenüberliegenden oberen Seiten miteinander verbunden sind, worin das Medium sich in der Begasungskolonne absteigend und in der Entgasungskolonne aufsteigend bewegt, worin dem Medium im Bereich der Bodenseite der Begasungskolonne ein H2 enthaltendes Gas zugeführt wird.
Die Erfindung betrifft eine Vorrichtung zur biologischen Methanisierung von CO und/oder CO2 mittels methanogener Mikroorganismen durch Umsetzung von H2 und CO und/oder CO2, die eine Begasungskolonne und eine Entgasungskolonne, jeweils mit einer Bodenseite und einer der Bodenseite gegenüberliegenden oberen Seite, ein in der Begasungskolonne und der Entgasungskolonne bereitgestelltes Medium mit methanogenen Mikroorganismen, eine Zuführeinrichtung zum Zuführen eines H2 enthaltenden Gases in das Medium der Begasungskolonne, eine Abführeinrichtung zum Abführen eines CH4 enthaltenden Gases aus der Entgasungskolonne, eine Verbindungsleitung zwischen Begasungskolonne und Entgasungskolonne im Bereich der Bodenseiten, eine Pumpe zum Überführen von Medium über die Verbindungsleitung von der Begasungskolonne in die Entgasungskolonne, und eine Rückführleitung zwischen der Begasungskolonne und der Entgasungskolonne im Bereich der oberen Seiten zum Rückführen von Medium aus der Entgasungskolonne in die Begasungskolonne aufweist. Die Erfindung betrifft auch ein Verfahren zur biologischen Methanisierung von CO und/oder CO2 in einer Vorrichtung mittels methanogener Mikroorganismen als Teil eines in der Vorrichtung bereitgestellten Mediums, wobei das Medium in einem Kreislauf über eine Begasungskolonne und eine Entgasungskolonne geführt wird, wobei die Kolonnen jeweils über eine Verbindungsleitung im Bereich ihrer Bodenseiten und über eine Rückführleitung im Bereich der den Bodenseiten gegenüberliegenden oberen Seiten miteinander verbunden sind, worin das Medium sich in der Begasungskolonne absteigend und in der Entgasungskolonne aufsteigend bewegt, worin dem Medium in der Begasungskolonne ein H2 enthaltendes Gas zugeführt wird.
Die Erfindung betrifft eine Vorrichtung zur biologischen Methanisierung von CO und/oder CO2mittels methanogener Mikroorganismen durch Umsetzung von H2und CO und/oder CO2, die eine Begasungskolonne und eine Entgasungskolonne, jeweils mit einer Bodenseite und einer der Bodenseite gegenüberliegenden oberen Seite, ein in der Begasungskolonne und der Entgasungskolonne bereitgestelltes Medium mit methanogenen Mikroorganismen, eine Zuführeinrichtung zum Zuführen eines H2enthaltenden Gases in das Medium der Begasungskolonne, eine Abführeinrichtung zum Abführen eines CH4enthaltenden Gases aus der Entgasungskolonne, eine Verbindungsleitung zwischen Begasungskolonne und Entgasungskolonne im Bereich der Bodenseiten, eine Pumpe zum Überführen von Medium über die Verbindungsleitung von der Begasungskolonne in die Entgasungskolonne, und eine Rückführleitung zwischen der Begasungskolonne und der Entgasungskolonne im Bereich der oberen Seiten zum Rückführen von Medium aus der Entgasungskolonne in die Begasungskolonne aufweist. Die Erfindung betrifft auch ein Verfahren zur biologischen Methanisierung von CO und/oder CO2in einer Vorrichtung mittels methanogener Mikroorganismen als Teil eines in der Vorrichtung bereitgestellten Mediums, wobei das Medium in einem Kreislauf über eine Begasungskolonne und eine Entgasungskolonne geführt wird, wobei die Kolonnen jeweils über eine Verbindungsleitung im Bereich ihrer Bodenseiten und über eine Rückführleitung im Bereich der den Bodenseiten gegenüberliegenden oberen Seiten miteinander verbunden sind, worin das Medium sich in der Begasungskolonne absteigend und in der Entgasungskolonne aufsteigend bewegt, worin dem Medium in der Begasungskolonne ein H2enthaltendes Gas zugeführt wird.
Im Projekt „BioMeth“ wurden zwei neuartige und bislang noch nicht für die biologische Methanisierung beschriebene Anlagenkonzepte entwickelt. Der neuentwickelte Invers-Membranreaktor (IMR) ermöglicht es, den Eintrag der erforderlichen Eduktgase Wasserstoff H2 und Kohlendioxid CO2 über kommerziell erhältliche Ultrafiltrationsmembranen und den Entgasungsbereich für den Methanaustrag räumlich zu trennen und zusätzlich einen hydraulischen Druck zur Steigerung des Wasserstoffeintrages zu nutzen. Ein Vorteil des Verfahrens ist, dass perspektivisch sowohl das CO2 aus klassischem Biogas als auch CO2-Quellen aus industriellen Abluftströmen, z. B. aus der Zementindustrie als Kohlenstoffquelle genutzt werden können.
Über die biologische Methanisierung hinaus eignet sich der Invers-Membranreaktor der Einschätzung der Autoren nach auch generell zur biotechnologischen Herstellung nicht-flüchtiger Wertstoffe ausgehend von gasförmigen Substraten. Im IMR kann z. B. ein Membranmodul zum Eintrag der Eduktgase verwendet werden, während ein weiteres Hohlmembranmodul zur zyklischen oder kontinuierlichen Abtrennung der wertstoffhaltigen Reaktionslösung unter Rückhaltung der Mikrobiologie im Sinne eines In-situ Product Recovery (ISPR)-Konzeptes genutzt werden kann.
Als herausragendes Ergebnis erwies sich während der Untersuchung des IMR, dass mit dem Konzept der Membranbegasung CH4-Konzentrationen von > 90 Vol.-% über eine einjährige Versuchsreihe kontinuierlich und mit flexiblem Gaseintrag erzielt werden konnten. Nach Inbetriebnahme war dabei außer der Zugabe von H2 und CO2 als Energie- bzw. C-Quelle lediglich eine zweimalige Ergänzung von Supplementen erforderlich. Die maximal erreichte membranflächen-spezifische Methanbildungsrate ohne Gaszirkulation lag bei 83 LN Methan pro m2 Membranfläche und Tag bei einer Produktgaszusammensetzung von 94 Vol.% Methan, 2 Vol.% H2, und 4 Vol.% CO2.
Das zweite noch in der frühen Testphase befindliche Verfahren nutzt Druckunterschiede in einer 10 m hohen gepackten Gegenstromblasensäule, die mit einem ebenfalls 10 m hohen separaten Entgasungs-Reaktor kombiniert wurde. Diese Verfahrenskonzept soll es ermöglichen, eine hohe Wasserstofflöslichkeit aufgrund des am Säulenfuß vorliegenden hydrostatischen Druckes zu erreichen und dabei gleichzeitig den Energiebedarf zu minimieren, die Investitionskosten zu reduzieren und optimale zeitliche und räumlichen Bedingungen für die mikrobiologische Umsetzung von H2 und CO2 zu schaffen. Erste Untersuchungen am Gegenstromblasensäulenreaktor zum Stoffübergang von Luft bestätigten eine gute Anreicherung der im Kreislauf geführten Flüssigkeit bereits bei verhältnismäßig niedrigen Gasleerrohrgeschwindigkeiten. In der zweiten Säule des Reaktoraufbaus sollte am Kopf aufgrund der Druckentspannung ein Ausgasen der im Vergleich zu Atmosphärendruck mit Gas übersättigten Flüssigkeit erfolgen. Das Ausgasen der Flüssigkeit konnte ebenfalls am Beispiel des Lufteintrages bestätigt werden.