Refine
Document Type
Conference Type
- Konferenzartikel (2)
Language
- English (2)
Has Fulltext
- no (2)
Is part of the Bibliography
- yes (2)
Keywords
Institute
Open Access
- Closed (1)
- Diamond (1)
- Open Access (1)
Additive manufacturing with plastics enables the production of lightweight and resilient components with a high degree of design freedom. In the low-cost sector, Material Extrusion as Fused Layer Modeling (FLM) has so far been the leading method, as it offers simple 3D printers and a variety of inexpensive 3D materials. However, printing times for 6FLM are very long and dimensional accuracy and surface finish are rather poor. Recently, new processes from the field of Vat Polymerization have appeared on the market, such as masked Stereolithography (mSLA), which offer a significant improvement in component quality and build speed at equally favorable machine costs.
This paper therefore analyzes the technical and economic capabilities of the two competing additive processes. For this purpose, the achievable dimensional and surface qualities are determined using a test specimen which represents various important geometry elements. In addition, the machine and material costs are determined and compared with each other. Finally, the resulting environmental impact is determined in the form of the CO2 footprint. In order to optimize the strength of the printed components, material properties of the tensile specimens produced additively with mSLA are determined. The use of ABS-like resins will also be investigated to determine optimal processing settings.
Additive manufacturing enables the production of lightweight and resilient components with extensive design freedom. In the low-cost sector, material extrusion (e.g. Fused Deposition Modeling - FDM) has been the main method used to date. Thus, robust 3D printers and inexpensive 3D materials (polymer filaments) can be used. However, the printing times for FDM are very long and the quality of the dimensions and surfaces is limited. Recently, new processes from the field of Vat polymerization have entered the market. For example, masked stereolithography (mSLA) offers a significant improvement in component quality and build speed through the use of resins and large-area curing at still reasonable costs. Currently, there is only limited knowledge available on the optimal design of components using this young process. In this contribution, design guidelines are developed to determine the possibilities and limitations of mSLA from a design point of view. For this purpose, a number of test geometries are designed and investigated to obtain systematic insights into important design features, such as wall thickness, grooves and holes. In addition, typical problems in additive manufacturing, such as the design of overhangs and fits or the hollowing of components, are investigated. The evaluation of practical 3D printing tests thus provides important parameters that can be transferred to design guidelines of components for additive manufacturing using mSLA.