Refine
Document Type
- Article (reviewed) (4)
- Report (1)
Has Fulltext
- no (5)
Is part of the Bibliography
- yes (5)
Keywords
- Lichtbogenofen (2)
- Wärmeübertragung (2)
- Energiespeicher (1)
- Energieversorgung (1)
- Festbett (1)
- Schmelze (1)
- Schrott (1)
- Schrottschmelze (1)
Institute
Open Access
- Closed Access (3)
- Open Access (1)
Radiation is an important means of heat transfer inside an electric arc furnace (EAF).
To gain insight into the complex processes of heat transfer inside the EAF vessel, not only radiation from the surfaces but also emission and absorption of the gas phase and the dust cloud need to be considered.
Furthermore, the radiative heat exchange depends on the geometrical configuration which is continuously changing throughout the process.
The present paper introduces a system model of the EAF which takes into account the radiative heat transfer between the surfaces
and the participating medium. This is attained by the development of a simplified geometrical model,
the use of a weighted-sum-of-gray-gases model, and a simplified consideration of dust radiation.
The simulation results were compared with the data of real EAF plants available in literature.
Packed beds serve as thermal energy storages (TES) and heat exchangers (HEX) in different technological applications. In this paper, a general heterogeneous model of heat transfer in packed beds is developed. It is implemented by lumped element formulation in object-oriented modeling language Modelica and is successful validated with data sets taken from two different experiments reported in literature.
The main advantages of the introduced model are the general, theory-based approach and the lumped element formulation in Modelica. The first point mentioned above should allow to simulate a packed bed TES/HEX without the necessity applying measured data for model calibration or to apply specific heat transfer correlations with restricted application. The second point establishes the possibility to integrate the TES/HEX model within plant models of larger scale without increasing the simulation time drastically.
Electric arc furnaces (EAF) are complex industrial plants whose actual behavior depends upon numerous factors. Due to its energy intensive operation, the EAF process has always been subject to optimization efforts. For these reasons, several models have been proposed in literature to analyze and predict different modes of operation. Most of these models focused on the processes inside the vessel itself. The present paper introduces a dynamic, physics-based model of a complete EAF plant which consists of the four subsystems vessel, electric system, electrode regulation, and off-gas system. Furthermore the solid phase is not treated to be homogenous but a simple spatial discretization is employed. Hence it is possible to simulate the energy input by electric arcs and fossil fuel burners depending on the state of the melting progress. The model is implemented in object-oriented, equation-based language Modelica. The simulation results are compared to literature data.
Physics-based Modeling of the Electric Arc furnace Process using Object-Oriented Language Modelica
(2016)
Electric arc furnaces (EAF) are complex industrial plants whose actual behavior depends upon numerous factors. Due to its energy intensive operation, the EAF process has always been subject to optimization efforts. For these reasons, several models have been proposed in literature to analyze and predict different modes of operation. Most of these models focused on the processes inside the vessel itself. The present paper introduces a dynamic, physics-based model of a complete EAF plant which consists of the four subsystems vessel, electric system, electrode regulation, and off-gas system. Furthermore the solid phase is not treated to be homogenous but a simple spatial discretization is employed. Hence it is possible to simulate the energy input by electric arcs and fossil fuel burners depending on the state of the melting progress. The model is implemented in object-oriented, equation-based language Modelica. The simulation results are compared to literature data.