Refine
Document Type
- Conference Proceeding (6)
- Book (1)
Conference Type
- Konferenz-Abstract (4)
- Konferenz-Poster (1)
- Konferenzartikel (1)
Has Fulltext
- no (7)
Is part of the Bibliography
- yes (7)
Keywords
Institute
Open Access
- Closed Access (5)
- Closed (1)
Introduction: To simplify AV delay (AVD) optimization in cardiac resynchronization therapy (CRT), we reported that the hemodynamically optimal AVD for VDD and DDD mode CRT pacing can be approximated by individually measuring implant-related interatrial conduction intervals (IACT) in oesophageal electrogram (LAE) and adding about 50ms. The programmer-based St Jude QuickOpt algorithm is utilizing this finding. By automatically measuring IACT in VDD operation, it predicts the sensed AVD by adding either 30ms or 60ms. Paced AVD is strictly 50ms longer than sensed AVD. As consequence of those variations, several studies identified distinct inaccuracies of QuickOpt. Therefore, we aimed to seek for better approaches to automate AVD optimization.
Methods: In a study of 35 heart failure patients (27m, 8f, age: 67±8y) with Insync III Marquis CRT-D systems we recorded telemetric electrograms between left ventricular electrode and superior vena cava shock coil (LVtip/SVC = LVCE) simultaneously with LAE. By LVCE we measured intervals As-Pe in VDD and Ap-Pe in DDD operation between right atrial sense-event (As) or atrial stimulus (Ap), resp., and end of the atrial activity (Pe). As-Pe and Ap-Pe were compared with As-LA an Ap-LA in LAE, respectively.
Results: End of the left atrial activity in LVCE could clearly be recognized in 35/35 patients in VDD and 29/35 patients in DDD operation. We found mean intervals As-LA of 40.2±24.5ms and Ap-LA of 124.3±20.6ms. As-Pe was 94.8±24.1ms and Ap-Pe was 181.1±17.8ms. Analyzing the sums of As-LA + 50ms with duration of As-Pe and Ap-LA + 50ms with duration of Ap-Pe, the differences were 4.7±9.2ms and 4.2±8.6ms, resp., only. Thus, hemodynamically optimal timing of the ventricular stimulus can be triggered by automatically detecting Pe in LVCE.
Conclusion: Based on minimal deviations between LAE and LVCE approach, we proposed companies to utilize the LVCE in order to automate individual AVD optimization in CRT pacing.
Introduction: Patient selection for cardiac resynchronization therapy (CRT) requires quantification of left ventricular conduction delay (LVCD). After implantation of biventricular pacing systems, individual AV delay (AVD) programming is essential to ensure hemodynamic response. To exclude adverse effects, AVD should exceed individual implant-related interatrial conduction times (IACT). As result of a pilot study, we proposed the development of a programmer-based transoesophageal left heart electrogram (LHE) recording to simplify both, LVCD and IACT measurement. This feature was implemented into the Biotronik ICS3000 programmer simultaneously with 3-channel surface ECG.
Methods: A 5F oesophageal electrode was perorally applied in 44 heart failure CRT-D patients (34m, 10f, 65±8 yrs., QRS=162±21ms). In position of maximum left ventricular deflection, oesophageal LVCD was measured between onsets of QRS in surface ECG and oesophageal left ventricular deflection. Then, in position of maximum left atrial deflection (LA), IACT in VDD operation (As-LA) was calculated by difference between programmed AV delay and the measured interval from onset of left atrial deflection to ventricular stimulus in the oesophageal electrogram. IACT in DDD operation (Ap-LA) was measured between atrial stimulus and LA..
Results: LVCD of the CRT patients was characterized by a minimum of 47ms with mean of 69±23ms. As-LA and Ap-LA were found to be 41±23ms and 125±25ms, resp., at mean. In 7 patients (15,9%), IACT measurement in DDD operation uncovered adverse AVD if left in factory settings. In this cases, Ap-LA exceeded the factory AVD. In 6 patients (13,6%), IACT in VDD operation was less than or equal 10ms indicating the need for short AVD.
Conclusion: Response to CRT requires distinct LVCD and AVD optimization. The ICS3000 oesophageal LHE feature can be utilized to measure LVCD in order to justify selection for CRT. IACT measurement simplifies AV delay optimization in patients with CRT systems irrespective of their make and model.
AV delay (AVD) optimization is mandatory in cardiac resynchronization (CRT) for heart failure. Several time consuming methods exist. We initialized development of left-atrial electrogram (LAE) feature for Biotronik ICS3000 programmer. It can be utilized to approximate optimal AV delay in CRT patients with pacing systems irrespective of make and model. Using this feature, we studied the share of interatrial conduction intervals (IACT) on individual echo AVD in 45 CRT patients (34m, 11f, mean age 69±6yrs.). The percentage of IACT on optimal echo AVD resulted in44.5±22.1% for VDD and 70.7±10.9% for DDD operation. In all patients, optimal echo AVDs exceeded the individual IACT by a duration of 52.5±33.3ms (p<0.001), at mean. Therefore, if AV delay optimization is not possible or not practicable in CRT patients, AVD should be approximated by individually measuring IACT and adding about 50ms.
Significance of new electrocardiographic parameters to improve cardiac resynchronization therapy
(2011)
Introduction: Oesophageal left heart electrogram (LHE) is a valuable tool providing electrocardiographic parameters for cardiac resynchronization therapy (CRT). It can be utilized to measure left ventricular (LVCD) and intra-leftventricular conduction delays (ILVCD) in heart failure patients to justify implantation of CRT systems. In the follow-up, LHE enables measurement of implant-related interatrial conduction times (IACT) which are the key intervals defining the hemodynamically optimal AV delay (AVD).
Methods: By TOSlim oesophageal electrode and Rostockfilter (Osypka AG, Rheinfelden, Germany), LHE was recorded in 39 heart failure patients (10f, 29m, 65±8yrs., QRS=163±21ms) after implantation of CRT systems according to guidelines. In position of maximal left ventricular deflection, LVCD and ILVCD were measured and compared with QRS width. In position of maximal left atrial deflection (LA), IACT was determined in VDD and DDD operation as interval As-LA and Ap-LA between atrial sense event (As) or stimulus (Ap), resp., and onset of LA. AVD was individualized using SAV =As-LA + 50ms for VDD and PAV=Ap-LA + 50ms for DDD operation.
Results: The CRT patients were characterized by minimal transoesophageal LVCD of 40ms but 73±20ms, at mean, ILVCD of 90±24ms and QRS/LVCD ratio of 2.4±0.6. The measured As-LA of 39±24ms and Ap-LA of 124±26ms resulted into SAV of 89±24ms and PAV of 174±26ms. In case of empirical AVD programming using 120ms for SAV and 180ms for PAV, the LHE revealed inverse sequences of LA and Vp in 4 patients (10%) during VDD and 13 patients (33%) in DDD pacing. In these patients, Vp preceded LA as IACT exceeded the programmed AVD.
Conclusion: Guideline indication of CRT systems is associated with LVCD of 40ms or more. Therefore, individual LVCD offers the minimal target interval that should be reached during left ventricular electrode placement to increase responder rate. Postoperatively, AV delay optimization respecting implant-related IACTs excludes adverse hemodynamic effects.
Electrical velocimetry to optimize VV delay in biventricular VVIR and DDD pacing for heart failure
(2011)
Introduction: VV delay (VVD) is the only parameter to hemodynamically optimize cardiac resynchronization therapy (CRT) for patients with atrial fibrillation (AF). Electrical velocimetry (EV) has been established to monitor thoracic electrical conductivity and to calculate hemodynamic surrogate parameters. We compared the response of this method to hemodynamic parameter changes between CRT patients with sinus rhythm (SR) and patients with AF.
Methods: VVD was individualized in 17 CRT patients in SR (12m, 5f, 67.0±7.2yrs.) after echo AV delay optimization and in 11 CRT patients in AF (10m, 1f, 69.8±9.6yrs.) using the Aesculon Cardiovascular Monitor (Osypka Medical, Berlin, Germany). Serial 30s EV recordings were accomplished, decreasing the VVD stepwise by 10ms from +60ms to -60ms between right and left ventricular stimulus. Optimal VVD was determined by the maximum of at least two of the three averaged parameters stroke volume (SV), cardiac output (CO) and cardiac index (CI). The response of SV, CO and CI was tested comparing their values in optimal VVD and suboptimal VVD. Suboptimal VVD was defined by optimal VVD±20ms.
Results: In all 28 patients in SR and AF, EV recordings resulted in optimal VVD. Between suboptimal and optimal mean VVD of 18.6±30.8ms between left and right ventricular stimulus, SV increased by 7.2±6.8%, CO by 7.8±7.2% and CI by 10.0±13.3% (all p<0.02). In the SR group with VVD of 18.8± 29.6ms, SV increased by 4.6±2.9%, CO by 5.0±2.9% and CI by 4.9±2.9% (all p<0.02). In the AF group with VVD of 18.2±4.0ms, SV increased by 10.4±8.9%, CO by 11.3±9.5% and CI by 16.4±18.2% (all p<0.02). Significant differences were not found between optimal VVD in SR and AF patients.
Conclusion: EV is a feasible serial method to individualize VVD in DDD and VVIR pacing for heart failure. Its response to hemodynamic changes demonstrates the value of EV for VVD fine-tuning.