Refine
Document Type
Conference Type
- Konferenz-Abstract (9)
- Konferenz-Poster (1)
- Konferenzartikel (1)
Is part of the Bibliography
- yes (13)
Keywords
Institute
Open Access
- Closed Access (8)
- Open Access (4)
- Closed (1)
- Gold (1)
The increasingly stringent CO2 emissions standards require innovative solutions in the vehicle development process. One possibility to reduce CO2 emissions is the electrification of powertrains. The resulting increased complexity, as well as the increased competition and time pressure make the use of simulation software and test benches indispensable in the early development phases. This publication therefore presents a methodology for test bench coupling to enable early testing of electrified powertrains. For this purpose, an internal combustion engine test bench and an electric motor test bench are virtually interconnected. By applying and extending the Distributed Co-Simulation Protocol Standard for the presented hybrid electric powertrain use case, real-time-capable communication between the two test benches is achieved. Insights into the test bench setups, and the communication between the test benches and the protocol extension, especially with regard to temperature measurements, enable the extension to be applied to other powertrain or test bench configurations. The shown results from coupled test bench operations emphasize the applicability. The discussed experiences from the test bench coupling experiments complete the insights.
Introduction: To simplify AV delay (AVD) optimization in cardiac resynchronization therapy (CRT), we reported that the hemodynamically optimal AVD for VDD and DDD mode CRT pacing can be approximated by individually measuring implant-related interatrial conduction intervals (IACT) in oesophageal electrogram (LAE) and adding about 50ms. The programmer-based St Jude QuickOpt algorithm is utilizing this finding. By automatically measuring IACT in VDD operation, it predicts the sensed AVD by adding either 30ms or 60ms. Paced AVD is strictly 50ms longer than sensed AVD. As consequence of those variations, several studies identified distinct inaccuracies of QuickOpt. Therefore, we aimed to seek for better approaches to automate AVD optimization.
Methods: In a study of 35 heart failure patients (27m, 8f, age: 67±8y) with Insync III Marquis CRT-D systems we recorded telemetric electrograms between left ventricular electrode and superior vena cava shock coil (LVtip/SVC = LVCE) simultaneously with LAE. By LVCE we measured intervals As-Pe in VDD and Ap-Pe in DDD operation between right atrial sense-event (As) or atrial stimulus (Ap), resp., and end of the atrial activity (Pe). As-Pe and Ap-Pe were compared with As-LA an Ap-LA in LAE, respectively.
Results: End of the left atrial activity in LVCE could clearly be recognized in 35/35 patients in VDD and 29/35 patients in DDD operation. We found mean intervals As-LA of 40.2±24.5ms and Ap-LA of 124.3±20.6ms. As-Pe was 94.8±24.1ms and Ap-Pe was 181.1±17.8ms. Analyzing the sums of As-LA + 50ms with duration of As-Pe and Ap-LA + 50ms with duration of Ap-Pe, the differences were 4.7±9.2ms and 4.2±8.6ms, resp., only. Thus, hemodynamically optimal timing of the ventricular stimulus can be triggered by automatically detecting Pe in LVCE.
Conclusion: Based on minimal deviations between LAE and LVCE approach, we proposed companies to utilize the LVCE in order to automate individual AVD optimization in CRT pacing.
Introduction: Patient selection for cardiac resynchronization therapy (CRT) requires quantification of left ventricular conduction delay (LVCD). After implantation of biventricular pacing systems, individual AV delay (AVD) programming is essential to ensure hemodynamic response. To exclude adverse effects, AVD should exceed individual implant-related interatrial conduction times (IACT). As result of a pilot study, we proposed the development of a programmer-based transoesophageal left heart electrogram (LHE) recording to simplify both, LVCD and IACT measurement. This feature was implemented into the Biotronik ICS3000 programmer simultaneously with 3-channel surface ECG.
Methods: A 5F oesophageal electrode was perorally applied in 44 heart failure CRT-D patients (34m, 10f, 65±8 yrs., QRS=162±21ms). In position of maximum left ventricular deflection, oesophageal LVCD was measured between onsets of QRS in surface ECG and oesophageal left ventricular deflection. Then, in position of maximum left atrial deflection (LA), IACT in VDD operation (As-LA) was calculated by difference between programmed AV delay and the measured interval from onset of left atrial deflection to ventricular stimulus in the oesophageal electrogram. IACT in DDD operation (Ap-LA) was measured between atrial stimulus and LA..
Results: LVCD of the CRT patients was characterized by a minimum of 47ms with mean of 69±23ms. As-LA and Ap-LA were found to be 41±23ms and 125±25ms, resp., at mean. In 7 patients (15,9%), IACT measurement in DDD operation uncovered adverse AVD if left in factory settings. In this cases, Ap-LA exceeded the factory AVD. In 6 patients (13,6%), IACT in VDD operation was less than or equal 10ms indicating the need for short AVD.
Conclusion: Response to CRT requires distinct LVCD and AVD optimization. The ICS3000 oesophageal LHE feature can be utilized to measure LVCD in order to justify selection for CRT. IACT measurement simplifies AV delay optimization in patients with CRT systems irrespective of their make and model.
AV delay (AVD) optimization is mandatory in cardiac resynchronization (CRT) for heart failure. Several time consuming methods exist. We initialized development of left-atrial electrogram (LAE) feature for Biotronik ICS3000 programmer. It can be utilized to approximate optimal AV delay in CRT patients with pacing systems irrespective of make and model. Using this feature, we studied the share of interatrial conduction intervals (IACT) on individual echo AVD in 45 CRT patients (34m, 11f, mean age 69±6yrs.). The percentage of IACT on optimal echo AVD resulted in44.5±22.1% for VDD and 70.7±10.9% for DDD operation. In all patients, optimal echo AVDs exceeded the individual IACT by a duration of 52.5±33.3ms (p<0.001), at mean. Therefore, if AV delay optimization is not possible or not practicable in CRT patients, AVD should be approximated by individually measuring IACT and adding about 50ms.
Significance of new electrocardiographic parameters to improve cardiac resynchronization therapy
(2011)
Introduction: Oesophageal left heart electrogram (LHE) is a valuable tool providing electrocardiographic parameters for cardiac resynchronization therapy (CRT). It can be utilized to measure left ventricular (LVCD) and intra-leftventricular conduction delays (ILVCD) in heart failure patients to justify implantation of CRT systems. In the follow-up, LHE enables measurement of implant-related interatrial conduction times (IACT) which are the key intervals defining the hemodynamically optimal AV delay (AVD).
Methods: By TOSlim oesophageal electrode and Rostockfilter (Osypka AG, Rheinfelden, Germany), LHE was recorded in 39 heart failure patients (10f, 29m, 65±8yrs., QRS=163±21ms) after implantation of CRT systems according to guidelines. In position of maximal left ventricular deflection, LVCD and ILVCD were measured and compared with QRS width. In position of maximal left atrial deflection (LA), IACT was determined in VDD and DDD operation as interval As-LA and Ap-LA between atrial sense event (As) or stimulus (Ap), resp., and onset of LA. AVD was individualized using SAV =As-LA + 50ms for VDD and PAV=Ap-LA + 50ms for DDD operation.
Results: The CRT patients were characterized by minimal transoesophageal LVCD of 40ms but 73±20ms, at mean, ILVCD of 90±24ms and QRS/LVCD ratio of 2.4±0.6. The measured As-LA of 39±24ms and Ap-LA of 124±26ms resulted into SAV of 89±24ms and PAV of 174±26ms. In case of empirical AVD programming using 120ms for SAV and 180ms for PAV, the LHE revealed inverse sequences of LA and Vp in 4 patients (10%) during VDD and 13 patients (33%) in DDD pacing. In these patients, Vp preceded LA as IACT exceeded the programmed AVD.
Conclusion: Guideline indication of CRT systems is associated with LVCD of 40ms or more. Therefore, individual LVCD offers the minimal target interval that should be reached during left ventricular electrode placement to increase responder rate. Postoperatively, AV delay optimization respecting implant-related IACTs excludes adverse hemodynamic effects.
In cardiac resynchronization therapy (CRT) for heart failure, individualization of the AV delay is essential to improve hemodynamics and to minimize non-responder rate. In patients in sinus rhythm having additional disposition to bradycardia, optimization is necessary for both situations, atrial sensing and pacing. Therefore, echo-optimization is the goldstandard but time consuming. Unfortunately, it depends on the particular CRT systems parameter set if the resulting individually optimal AV delays can be programmed or not. Some CRT systems provide a set of AV delays for DDD operation combined with a set of the pace-sense-compensation to optimize the AV delay in DDD and VDD operation. The pace-sense-compensation (PSC) can be defined by the difference of implant-related interatrial conduction intervals in DDD and VDD operation measured in the esophageal left atrial electrogram. In a cohort of 96 CRT patients we found mean PSC of 59-35ms ranging between 0-143ms. As a consequence, allowing 10ms tolerance, AVD optimization is completely impossible in one of the two modes, VDD or DDD operation, in 34 (35%) or 5 (5%) patients with implants restricting the PSC range to 60ms or 100ms, respectively. Thus, we propose companies to provide CRT systems with programmable pace-sense- compensation between 0ms and 150ms.
Die kardiale Resynchronisationstherapie ist ein großer Segen für viele Patienten mit einer Herzschwäche, die auf einen krankhaften Verlust der synchronen Kontraktion beider Herzkammern zurückzuführen ist. Warum einige von ihnen jedoch nicht darauf ansprechen, wird gegenwärtig erforscht. Als eine neue Methode mit dem Ziel der Effektivitätssteigerung dieser Therapie mit elektronischen Implantaten demonstrieren wir die Nutzbarkeit von durch eine Schluckelektrode aus der Speiseröhre abgeleiteten Elektrokardiogrammen.
Semi-invasive electromechanical target interval to guide left ventricular electrode placement
(2011)
In-vivo and in-vitro comparison of implant-based CRT optimization - What provide new algorithms?
(2011)
Introduction: In cardiac resynchronization therapy (CRT), individual AV delay (AVD) optimization can effectively increase hemodynamics and reduce non-responder rate. Accurate, automatic and easily comprehensible algorithms for the follow-up are desirable. QuickOpt is the first attempt of a semi-automatic intracardiac electrogram (IEGM) based AVD algorithm. We aimed to compare its accuracy and usefulness by in-vitro and in-vivo studies.
Methods: Using the programmable ARSI-4 four-chamber heart rhythm and IEGM simulator (HKP, Germany), the QuickOpt feature of an Epic HF system (St. Jude, USA) was tested in-vitro by simulated atrial IEGM amplitudes between 0.3 and 3.5mV during both, manual and automatic atrial sensing between 0.2 and 1.0mV. Subsequently, in 21 heart failure patients with implanted biventricular defibrillators, QuickOpt was performed in-vivo. Results of the algorithm for VDD and DDD stimulation were compared with echo AV delay optimization.
Results: In-vitro simulations demonstrated a QuickOpt measuring accuracy of ± 8ms. Depending on atrial IEGM amplitude, the algorithm proposed optimal AVD between 90 and 150ms for VDD and between 140 and 200ms for DDD operation, respectively. In-vivo, QuickOpt difference between individual AVD in DDD and VDD mode was either 50ms (20pts) or 40ms (1pt). QuickOpt and echo AVD differed by 41 ± 25ms (7 – 90ms) in VDD and by 18 ± 24ms (17-50ms) in DDD operation. Individual echo AVD difference between both modes was 73 ± 20ms (30-100ms).
Conclusion: The study demonstrates the value of in-vitro studies. It predicted QuickOpt deficiencies regarding IEGM amplitude dependent AVD proposals constrained to fixed individual differences between DDD and VDD mode. Consequently, in-vivo, the algorithm provided AVD of predominantly longer duration than echo in both modes. Accepting echo individualization as gold standard, QuickOpt should not be used alone to optimize AVD in CRT patients.
Using guideline parameters for indication of cardiac resynchronization therapy (CRT), only about two thirds of the patients improve clinically. Unfortunately both, surface ECG and echo are uncertain to predict CRT response. To better characterize cardiac desynchronization in heart failure, interventricular (IVCD) and intra-leftventricular conduction delays (ILVCD) were measured by esophageal left ventricular electrogram (LVE). Recordings in 43 CRT patients (34m, 9f, age: 64.7 ± 9.5yrs) evidenced only weak correlation between IVCD and QRS of 0.53 and between ILVCD and QRS of 0.33. This demonstrated that QRS duration is not a reliable indicator of desynchronization. Therefore, the study resulted into development of LVE feature for a programmer with implant support device. It can be used interoperatively to guide the left ventricular electrode location in order to increase responder rate in CRT.
AV delay (AVD) optimization can improve hemodynamics and avoid nonresponding to cardiac resynchronization therapy (CRT). AVD can be approximated by the sum of the individual implant-related interatrial conduction interval and a mean electromechanical interval of about 50ms. We searched for methods to facilitate automatic, implant-based AV delay optimization. In 25 patients (19m, 6f, age: 65±8yrs.) with Medtronic Insync III Marquis CRT-D series systems and left ventricular electrode at lateral or posterolateral wall, we determined interatrial conduction intervals by telemetric left ventricular tip versus superior vena cava coil electrogram (LVCE). Compared with esophageal measurements, the duration of optimal AV delay by LVCE showed good correlation (k=0.98, p=0.01) with a difference of 1.5±4.9ms, only. Therefore, LVCE is feasible to determine interatrial conduction intervals in order to automate AV delay optimization in CRT-D pacing promising increased accuracy compared to other algorithms.