Refine
Document Type
Conference Type
- Konferenzartikel (3)
Is part of the Bibliography
- yes (9)
Keywords
- Strömungsmechanik (2)
- Backflow-Toleranz (1)
- Bauteil (1)
- Computational Fluid Dynamics (1)
- Energie (1)
- Erziehung (1)
- Fahrzeugentwicklungsprozess (1)
- Fördertechnik (1)
- Hubvorrichtung (1)
- Körperform (1)
Institute
Open Access
- Open Access (6)
- Closed (1)
- Closed Access (1)
Having 22 GW of nominal power installed Germany is the leading nation in wind energy conversion. While the number of suitable installation sites ashore is limited, and the average windspeed and thus the utilization level offshore is significantly higher, more and more offshore wind farms are planned. In order to reduce the cost of building the foundations and of connecting the wind turbines to the power grid, the single plant is designed as powerful as possible and therefore the components become huge and weighty. For instance: In order to lift the nacelle with around 500 tons of weight up on the tower - which can be up to 120 m above the water level - at the time special ships and cranes are designed and built. But those firstly will be very expensive and secondly will be available only on a limited scale. Hence the installation cost of those huge wind turbines significantly influence the rentability of a wind farm. Against this background a joint research project supported by the German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (BMU) was started comprising the project partners Ed. Züblin AG, Berg-idl GmbH (an engineering company and a maker of special purpose machines in Altlußheim, Germany), the IPEK (institute for product development) at the university of Karlsruhe and the Hochschule Offenburg, university of applied science. Project target is the conceptual design of a heavy-duty elevator, which can be used to install the tower segments and the nacelle of a wind turbine offshore without a crane. The most relevant challenges in this context result of holding up extreme loads by means of comparatively filigree carrying structures. The paper shows some examples of structural analysis and optimization work accomplished during the project. For the structural analysis of the heavy loaded components ANSYS workbench was used. The development process was also supported by optimization tools like TOSCA and OPTIMUS. The linking of the FE solver and the optimizer provides important hints concerning improvement of the topology and the dimensions of the components. Examples of designs illustrate the development process and the methods applied.
Im Rahmen energieeffizienter Umströmungsprozesse sind Verfahren zur Entwicklung optimaler Körperformen notwendig. In einem Verbundforschungsvorhaben wird mit unterschiedlichen Methoden an diesem Ziel gearbeitet. Umströmungen von Körpern treten in Natur und Technik in vielfältigen Formen auf. Bei Tragflügeln ist der Auftrieb ein wesentliches Kriterium zur Funktion des Flugzeugs. Im Blick auf die Energieeffizienz kommt dem Widerstand immer größere Bedeutung zu. Im Rahmen eines Verbundprojekts „EUdaF-Energieeffiziente Umströmungsprozesse durch automatisierte Formoptimierung“ [1] wird nach Methoden geforscht, wie man die optimale Körperform für die Umströmung mit dem geringsten Widerstand finden kann.
Strukturanalyse und Optimierung eines kranlosen Montagesystems für Offshore-Windenergieanlagen
(2009)
In order to lift the nacelle of an offshore wind energy converter with around 500 tons of weight up on the tower – which can be up to 120 m above the water level – at the time special ships and cranes are designed and built. But those firstly will be very expensive and secondly will be available only on a limited scale. Against this background a joint research project supported by the german Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (BMU) was started comprising the project partners Ed. Züblin AG, Berg-idl GmbH, the IPEK at the university of Karlsruhe and the Hochschule Offenburg – University of Applied Sciences. Project target was the conceptual design of a heavy-duty elevator, which can be used to install the tower segments and the nacelle offshore without a crane. The most relevant challenges in this context result of holding up extreme loads by means of comparatively filigree carrying structures.
Um bei der Produktentwicklung auf die immer höheren Anforderungen wie Effizienz- oder Kostenoptimierung reagieren zu können, stehen die Unternehmen vor der Herausforderung, neue, leistungsfähige Komponenten zu entwickeln. Hierzu müssen geeignete Entwicklungswerkzeuge zur Verfügung stehen. Bei der Auslegung von strömungsführenden Bauteilen wie zum Beispiel Rohrleitungen, Krümmern oder Ansaugstutzen wird meist auf Standard Konstruktionen zurückgegriffen. Hierzu zählen zum Beispiel gerade Rohre, 90 Grad- Umlenkungen und Diffusoren. Neue Topologieoptimierungsverfahren im Bereich Computational Fluid Dynamics (CFD) bieten die Möglichkeit, solche Bauteile für den jeweiligen Anwendungsfall optimiert zu dimensionieren und somit zu einer Steigerung der Effizienz des Gesamtsystems beizutragen. Darüber hinaus kann die Topologieoptimierung schon in sehr frühen Phasen des Entwicklungsprozesses eingesetzt werden und somit helfen, die Anzahl an Entwicklungsstufen zu reduzieren.
Im Rahmen energieeffizienter Umströmungsprozesse sind Verfahren zur Entwicklung optimaler Körperformen notwendig. In einem Verbundforschungsvorhaben wird mit unterschiedlichen Methoden an diesem Ziel gearbeitet. Ausgehend von der umströmten Scheibe wird eine optimalere Körperform durch Simulation ermittelt.
We herein present a topology design method based on local optimality criteria which has been implemented in an open source Navier-Stokes solver for turbulent flows. Our method aims for the fast generation of geometry proposals in the early conceptual phase. To the best of our knowledge, this is the first local criteria approach utilizing a wall function turbulence model in order to consider turbulent flows. In order to allow for the growth as well as the shrinkage, or even the formation or disappearance of structural features, a topological approach is chosen. By introducing a volume fraction parameter, we distinguish between fluid and solid properties in each control volume. The fluid-solid interface is represented by an immersed boundary method using a piecewise linear surface reconstruction.