Refine
Document Type
Conference Type
- Konferenz-Abstract (14)
- Konferenzartikel (4)
Has Fulltext
- no (18)
Is part of the Bibliography
- yes (18)
Keywords
- Signaltechnik (2)
- Elektrokardiogramm (1)
- Herzkrankheit (1)
- Herzmuskelkrankheit (1)
- Herzschrittmacher (1)
- Kardiale Resynchronisationstherapie (1)
- Schrittmacher (1)
- Steuerung (1)
- Synchronisierung (1)
- Telemetrie (1)
Open Access
- Open Access (10)
- Closed Access (8)
Cardiac resynchronization therapy with biventricular pacing is an established therapy for heart failure patients with electrical left ventricular desynchronization. The aim of this study was to evaluate left atrial conduction delay, intra left atrial conduction delay, left ventricular conduction delay and intra left ventricular conduction delay in heart failure patients using novel signal averaging transesophageal left heart ECG software.
Methods: 8 heart failure patients with dilated cardiomyopathy (DCM), age 68 ± 9 years, New York Heart Association (NYHA) class 2.9 ± 0.2, 24.8 ± 6.7 % left ventricular ejection fraction, 188.8 ± 15.5 ms QRS duration and 8 heart failure patients with ischaemic cardiomyopathy (ICM), age 67 ± 8 years, NYHA class 2.9 ± 0.3, 32.5 ± 7.4 % left ventricular ejection fraction and 167.6 ± 19.4 ms QRS duration were analysed with transesophageal and transthoracic ECG by Bard LabDuo EP system and novel National Intruments LabView signal averaging ECG software.
Results: The electrical left atrial conduction delay was 71.3 ± 17.6 ms in ICM versus 72.3 ± 12.4 ms in DCM, intra left atrial conduction delay 66.8 ± 8.6 ms in ICM versus 63.4 ± 10.9 ms in DCM and left cardiac AV delay 180.5 ± 32.6 ms in ICM versus 152.4 ± 30.4 ms in DCM. The electrical left ventricular conduction delay was 40.9 ± 7.5 ms in ICM versus 42.6 ± 17 ms in DCM and intra left ventricular conduction delay 105.6 ± 19.3 ms in ICM versus 128.3 ± 24.1 ms in DCM.
Conclusions: Left heart signal averaging ECG can be utilized to analyse left atrial conduction delay, intra left atrial conduction delay, left ventricular conduction delay and intra left ventricular conduction delay to improve patient selection for cardiac resynchronization therapy.
Cardiac resynchronization therapy (CRT) with biventricular pacing is an established therapy for heart failure (HF) patients (P) with ventricular desynchronization and reduced left ventricular (LV) ejection fraction. The aim of this study was to evaluate electrical right atrial (RA), left atrial (LA), right ventricular (RV) and LV conduction delay with novel telemetric signal averaging electrocardiography (SAECG) in implantable cardioverter defibrillator (ICD) P to better select P for CRT and to improve hemodynamics in cardiac pacing.
Methods: ICD-P (n=8, age 70.8 ± 9.0 years; 2 females, 6 males) with VVI-ICD (n=4), DDD-ICD (n=3) and CRT-ICD (n=1) (Medtronic, Inc., Minneapolis, MN, USA) were analysed with telemetric ECG recording by Medronic programmer 2090, ECG cable 2090AB, PCSU1000 oscilloscope with Pc-Lab2000 software (Velleman®) and novel National Intruments LabView SAECG software.
Results: Electrical RA conduction delay (RACD) was measured between onset and offset of RA deflection in the RAECG. Interatrial conduction delay (IACD) was measured between onset of RA deflection and onset of far-field LA deflection in the RAECG. Interventricular conduction delay (IVCD) was measured between onset of RV deflection in the RVECG and onset of LV deflection in the LVECG. Telemetric SAECG recording was possible in all ICD-P with a mean of 11.7 ± 4.4 SAECG heart beats, 97.6 ± 33.7 ms QRS duration, 81.5 ± 44.6 ms RACD, 62.8 ± 28.4 ms RV conduction delay, 143.7 ± 71.4 ms right cardiac AV delay, 41.5 ms LA conduction delay, 101.6 ms LV conduction delay, 176.8 ms left cardiac AV delay, 53.6 ms IACD and 93 ms IVCD.
Conclusions: Determination of RA, LA, RV and LV conduction delay, IACD, IVCD, right and left cardiac AV delay by telemetric SAECG recording using LabView SAECG technique may be useful parameters of atrial and ventricular desynchronization to improve P selection for CRT and hemodynamics in cardiac pacing.
Introduction: Cardiac resynchronization therapy (CRT) with biventricular pacing is an established therapy for heart failure (HF) patients with sinus rhythm and ventricular desynchronisation. The aim of this study was to evaluate interventricular conduction delay (IVCD) and interatrial conduction delay (IACD) before and after premature ventricular contractions (PVC) in HF patients.
Methods: 13 HF patients (age 68 ± 10 years; 2 females, 11 males) with New York Heart Association functional class 2,8 ± 0.5, left ventricular (LV) ejection fraction 28,6 ± 12,6 %, 154 ± 25 ms QRS duration and PVC were analysed with bipolar transesophageal LV and left atrial electrogram recording and National Instruments LabView 2009 software. The level of significance of the t-test is 0,005.
Results: QRS duration increases during PVC (188 ± 32 ms) in comparison to the beat before (154 ± 25 ms, P = ) and after PVC (152 ± 25 ms,). IVCD increases during PVC up to 65 ± 33 ms (51 ± 19 ms in the beat before PVC, P=0.18, 49 ± 19 ms after PVC, P = 0.12). Intra-LV delay of 90 ± 16 ms is not different in the beat before PVC, 90 ± 14 ms during PVC (P = 0.99) and 94 ± 16 ms in the beat after PVC (P = 0.38). IACD is not significantly PVC influenced (67 ± 12 ms before PVC and 65 ± 13 ms after PVC, P = 0.71). Intra-left atrial conduction delay is not significant longer during PVC (57 ± 28 ms) than in the beat before PVC (54 ± 13 ms, P = 0.51) or after PVC (54 ± 8 ms, P = 0.45). PQ duration increases significantly after PVC (224 ± 95 ms) in comparison to the beat before PVC (176± 29 ms, P =...).
Conclusion: Transesophageal left cardiac electrocardiography with LabView 2009 software can improve evaluation of IVCD and IACD before, during and after PVC in HF patient selection for CRT.
Introduction: Cardiac resynchronization therapy (CRT) with biventricular pacing (BV) is an established therapy for heart failure (HF) patients (P) with ventricular desynchronisation, but not all patients improved clinically. Aim of this study was to evaluate electrical intra-left ventricular conduction delay (LVCD) and interventricular conduction delay (IVCD), to better select patients for CRT.
Methods: 65 HF patients (age 63.4 ± 10.6 years; 7 females, 58 males) with New York Heart Association (NYHA) class 3 ± 0.2, 24.4 ± 6.7 % left ventricular (LV) ejection fraction and 167.4 ± 35.6 ms QRSD were included. Esophageal TO Osypka focused hemispherical electrodes catheter was perorally applied in position of maximum LV deflection to measure LVCD between onset and offset of LV deflection and IVCD between earliest onset of QRS in the 12-channel surface ECG and onset of LV deflection in the focused bipolar transesophageal LV electrogram.
Results: There were 50 responders with LVCD of 76.5 ± 20.4 ms, IVCD of 80.5 ± 26.1 ms (P=0.34) and QRSD of 171 ± 37.7 ms. 15 non-responders had longer LVCD of 90 ± 28.5 ms (P = 0.045), shorter IVCD of 50.1 ± 29.1 ms (P < 0.001) and QRSD of 155.3 ± 25 ms (P=0.14). During 21.3 ± 20.3 month BV pacing follow-up, the responder`s NYHA classes improved from 3 ± 0.2 to 2. ± 0.3 (P < 0.001) whereas the non-responders NYHA classes did not improve from 3 ± 0.2 to 2.9 ± 0.3 (P = 0.43) during 15.7 ± 13.9 month BV pacing follow-up (53 Boston, 10 Medtronic and 2 St. Jude CRT devices).
Conclusion: Determination of electrical LVCD and IVCD by focused bipolar transesophageal LV electrogram recording may be an additional useful technique to improve patient selection for CRT.
New frontiers of supraventricular tachycardia and atrial flutter evaluation and catheter ablation
(2012)
Radiofrequency catheter ablation (RFCA) has revolutionized treatment for tachyarrhythmias and has become first-line therapy for some tachycardias. Although developed in the 1980s and widely applied in the 1990s, the technique is still in development. Transesophageal atrial pacing (TAP) can used for initiation and termination of supraventricular tachycardia (SVT).
Methods: The paroxysmal SVT include a wide spectrum of disorders including, in descending order of frequency, atrial flutter, atrioventricular (AV) nodal reentry, Wolff-Parkinson-White syndrome, and atrial tachycardia. While not life-threatening in most cases, they may cause important symptoms, such as palpitations, chest discomfort, breathlessness, anxiety, and syncope, which significantly impair quality of life. Medical therapy has variable efficacy, and most patients are not rendered free of symptoms. Research over the past several decades has revealed fundamental mechanisms involved in the initiation and maintenance of all of these arrhythmias. Knowledge of mechanisms has in turn led to highly effective surgical and catheter-based treatments. The supraventricular arrhythmias and their treatment are described in this report. SVT initiation was analysed with programmed TAP in 49 patients with palpitations (age 47 ± 17 years, 24 females, 25 males).
Results: In comparison to antiarrhythmic drug therapy the radiofrequency catheter ablation in patients suffering from atrial flutter, atrioventricular nodal reentry, atrioventricular reentry and atrial tachycardia is the better choice in most cases. TAP SVT initiation was possible in 23 patients before RFCA. Atrial cycle length of SVT was 320 ± 59 ms. We initiated AV nodal reentrant tachycardia (AVNRT, n=15), atrial tachycardia (AT, n=6) and AV reentrant tachycardia with Kent pathway conduction (AVRT, n=2) before RFCA.
Conclusions: Radiofrequency catheter ablation is a successful and safe method to cure most patients with paroxysmal supraventricular tachycardias. TAP allowed initiation and termination of SVT especially in outpatients.
Introduction: Cardiac resynchronization therapy (CRT) with biventricular (BV) pacing is an established therapy for heart failure (HF) patients with ventricular desynchronization and reduced left ventricular (LV) ejection fraction. The aim of this study was to evaluate electrical ventricular desynchronization with transthoracic and transesophageal signal averaging electrocardiography in HF, to better select patients for CRT.
Methods: 13 HF patients (age 68 ± 10 years; 2 females, 11 males) with New York Heart Association (NYHA) class 2.8 ± 0.5, 28.6 ± 12.6 % LV ejection fraction and 155 ± 24 ms QRS duration (QRSD) were analysed with transthoracic and transesophageal electrocardiogram recording and novel National Intruments LabView 2009 signal averaging software. Esophageal TO Osypka catheter was perorally applied to the esophagus and placed in the position of maximum LV de-flection. The 0.05-Hz high-pass filtered surface electrocardiogram and the 10-Hz high-pass filtered bipolar transesophageal electrocardiogram were recorded with Bard EP-System and 1000-Hz sampling rate.
Results: Transesophageal LV electrogram recording was possible in all HF patients (n=13). Transesophageal interventricular conduction delay (IVCD) was 51 ± 19 ms and measured between the earliest onset of QRS in the 12-channel surface electrocardiogram and the onset of the LV deflection in the transesophageal electrocardiogram. Transesophageal intra-left ventricular delay (LVCD) was 90 ± 16 ms and measured between the onset and offset of the LV deflection in the transesophageal electrocardiogram. QRSD to transesophageal IVCD ratio was 3.43 ± 1.31 ms, QRSD to transesophageal LVCD ratio was 1.75 ± 0.28 ms and QRSD was evaluated between onset and offset of QRS signal in the 12-channel surface electrocardiogram.
Conclusion: Determination of IVCD, LVCD, QRSD-to-IVCD-ratio and QRSD-to-LVCD-ratio by transesophageal LV electrogram recording with LabView 2009 signal averaging technique may be useful parameters of ventricular desynchronisation to improve patient selection for CRT.
Cardiac resynchronization therapy (CRT) with biventricular (BV) pacing is an established therapy in approximately two-thirds of symptomatic heart failure (HF) patients (P) with left bundle branch block (LBBB). The aim of this study was to evaluate left atrial (LA) conduction delay (LACD) and left ventricular (LV) conduction delay (LVCD) using pre-implantational transesophageal electrocardiography (ECG) in sinus rhythm (SR) CRT responder (R) and non-responder (NR).
Methods: SR HF P (n=52, age 63.6±10.4 years; 6 females, 46 males) with New York Heart Association (NYHA) class 3.0±0.2, 24.4±7.1 % LV ejection fraction and 171.2±37.6 ms QRS duration (QRSD) were measured by bipolar filtered transesophageal LA and LV ECG recording with hemispherical electrodes (HE) TO catheter (Osypka AG, Rheinfelden, Germany). LACD was measured between onset of P-wave in the surface ECG and onset of LA deflection in the LA ECG. LVCD was measured between onset of QRS in the surface ECG and onset of LV deflection in the LV ECG.
Results: There were 78.8 % SR CRT R (n=41) with 171.2±36.9 ms QRSD, 73.3±25.7 ms LACD, 80.0±24.0 ms LVCD and 2.3±0.5 QRSD-LVCD-ratio. SR CRT R QRSD correlated with LACD (r=0.688, P<0.001) and LVCD (r=0.699, P<0.001). There were 21.2 % SR CRT NR (n=11) with 153.4±22.4 ms QRSD (P=0.133), 69.8±24.8 ms LACD (n=6, P=0.767), 54.2±31.0 ms LVCD (P<0.0046) and 3.9±2.5 QRSD-LVCD-ratio (P<0.001). SR CRT NR QRSD not corre-lated with IACD (r=-0.218, P=0.678) and IVCD (r=0.042, P=0.903). During a 22.8±21.3 month CRT follow-up, the CRT R NYHA class improved from 3.1±0.3 to 1.9±0.3 (P<0.001). In CRT NR, NYHA class not improved (2.9±0.4 to 2.9±0.2, P=1) during 11.2±9.8 months BV pacing.
Conclusions: Transesophageal LA and LV ECG with HE can be utilized to analyse LACD and LVCD in HF P. Pre-implantational LVCD and QRSD-LVCD-ratio may be additional useful parameters to improve P selection for SR CRT.
Introduction: Cardiac resynchronisation therapy (CRT) with atrioventricular (AV) and interventricular (VV) optimized biventricular pacing (BV) is an established therapy for heart failure (HF) patients with electrical interventricular conduction delay (IVCD). The aim of the study was to compare AV and VV delay optimization with cardiac output (CO) and acceleration index (ACI) impedance cardiographic (ICG) methods.
Methods: HF patients with IVCD 86.8 ± 33 ms (n=15, age 66 ± 10 years; 2 females, 13 males), New York Heart Association (NYHA) functional class 3.1 ± 0.4, left ventricular (LV) ejection fraction 21.3 ± 7.8 % and QRS duration 176.1 ± 31.7 ms underwent AV and VV delay optimization with CO and ACI methods (Cardioscreen, Medis GmbH, Ilmenau, Germany). After evaluation of optimal AV delay, we evaluated optimal VV delay during simultaneous LV and right ventricular (RV) pacing (LV=RV), LV before RV pacing (LV-RV) and RV before LV pacing (RV-LV).
Results: Optimal VV delay was -12.3 ± 25.9 ms LV-RV pacing with VV delay range from -80 ms LV-RV pacing to +20 ms RV-LV pacing and RV=LV pacing. Optimal AV delay after atrial sensing was 108.6 ± 20.3 ms (n=14) and optimal AV delay after atrial pacing 190 ± 14.1 ms (n=2) with AV delay range from 80 ms to 200 ms. RV versus BV pacing mode resulted in improvement of CO from 3.4 ± 1.2 l/min to 4.4 ± 1.4 l/min (p<0.001) and ACI from 0.667 ± 0.227 1/s² to 0.834 ± 0.282 1/s² (p<0.002). During 34 ± 26 month BV pacing, the NYHA class improved from 3.1 ± 0.4 to 2.1 ± 0.4 (p<0.001).
Conclusion: AV and VV delay optimized BV pacing acutely improve ICG CO and ACI and their NYHA class during long-term follow-up. ICG may be a simple and useful technique to optimize AV and VV delay in CRT.
Introduction: Cardiac resynchronization therapy (CRT) with left ventricular (LV) pacing is an established therapy for heart failure (HF) patients (P) with ventricular desynchronisation and reduced LV ejection fraction (EF). The aim of this study was to test the utilization of the transesophageal approach to measure arterial pulse pressure (PP) during LV pacing and electrical interventricular conduction delay (IVCD), to better select patients for CRT.
Methods: 32 HF patients (age 64 ± 10 years; 5 females, 27 males) with New York Heart Association (NYHA) class 2.8 ± 0.6, 27 ± 11 % LV EF and 155 ± 35 ms QRS duration were analysed with semi-invasive left cardiac pacing and electrocardiography. Esophageal TO8 Osypka catheter of 10.5 F diameter was perorally applied to the esophagus and placed in the position of maximum left atrial (LA) deflection and maximum LV deflection to measure PP with VAT or D00 pacing modes.
Results: Temporary transesophageal LV pacing was possible with VAT mode (n=16) and D00 mode (n=16) in all patients. In 15 Δ-PP-responders, PP was higher during LV pacing on than LV pacing off (78.3 ± 26.6 versus 65.9 ± 23.7 mmHg, P < 0.001) and NYHA class improved from 3.1 ± 0.35 to 2.1 ± 0.35 (P < 0.001) during 29 ± 26 month biventricular (BV) pacing follow-up (6 Medtronic and 9 Boston BV pacing devices). In 17 Δ-PP-non-responders, PP was not higher during LV pacing on than LV pacing off (61.5 ± 23.9 versus 60.9 ± 23.5 mmHg, P = 0.066). IVCD was significant longer in Δ-PP-responders than in Δ-PP-non-responders (87 ± 33 ms versus 37± 29 ms, P < 0.001).
Conclusion: Semi-invasive transesophageale LA and LV pacing with D00 and VAT mode and LV electrogram recording may be useful techniques to predict CRT improvement.
Capture threshold (CT) for transesophageal left atrial (LA) pacing (TLAP) and transesophageal left ventricular (LV) pacing (TLVP) with conventional cylindrical electrodes (CE) are higher than TLAP feeling threshold (FT). Purpose of the study was to evaluate focused TLAP CT and FT for supraventricular tachycardia (SVT) initiation and focused TLVP CT for cardiac resynchronisation therapy (CRT) simulation.
Methods: SVT initiation in patients (P) with palpitations (n=49, age 47 ± 17 years) was analysed during spontaneous rhythm and during focused bipolar TLAP with atrial constant current stimulus output, distal CE and three or seven 6 mm hemispherical electrodes (HE) (TO, Osypka AG, Rheinfelden, Germany). CRT simulation in heart failure P (n=75, age 62 ± 11 years) was evaluated by focused bipolar TLAP and/or TLVP with ventricular constant voltage stimulus output and different pacing mode.
Results: Focused electrical pacing field between CE and HE (n=28) allowed low threshold TLAP with 8.0 ± 2.6 mA CT at 9.9 ms stimulus duration (SD) which was lower than 9.2 ± 4.5 mA FT at 9.9 ms SD. Focused electrical pacing field between HE and HE (n=21) allowed low threshold TLAP with 8.1 ± 2.2 mA CT at 9.9 ms SD which was lower than 9.8 ± 5.0 mA FT at 9.9 ms SD. SVT initiation by programmed AAI TLAP was possible in 23 P and not possible in 26 P. CRT simulation was evaluated with TLAP and TLVP with VAT, D00 and V00 pacing mode and 95.5 ± 10.9 V TLVP CT at 4.0 ms SD.
Conclusions: Programmed focused AAI TLAP allowed initiation of SVT with very low CT and high FT and focused electrical pacing field between CE-HE and HE-HE.CRT simulation with focused TLAP and/or TLVP with VAT, D00 and V00 pacing mode may be a useful technique to detect responders to CRT.