Refine
Document Type
- Article (reviewed) (11)
Language
- English (11)
Has Fulltext
- no (11)
Is part of the Bibliography
- yes (11)
Keywords
- Adsorption (6)
- Metallorganisches Netzwerk (6)
- Kupfer (3)
- Chemische Synthese (1)
- Differenz (1)
- Flexibilität (1)
- Gas (1)
- Isoglosse (1)
- Katalyse (1)
- Kristallstruktur (1)
Institute
Open Access
- Closed Access (8)
- Open Access (1)
An isomorphous series of 10 microporous copper-based metal–organic frameworks (MOFs) with the general formulas ∞3[{Cu3(μ3-OH)(X)}4{Cu2(H2O)2}3(H-R-trz-ia)12] (R = H, CH3, Ph; X2– = SO42–, SeO42–, 2 NO32– (1–8)) and ∞3[{Cu3(μ3-OH)(X)}8{Cu2(H2O)2}6(H-3py-trz-ia)24Cu6]X3 (R = 3py; X2– = SO42–, SeO42– (9, 10)) is presented together with the closely related compounds ∞3[Cu6(μ4-O)(μ3-OH)2(H-Metrz-ia)4][Cu(H2O)6](NO3)2·10H2O (11) and ∞3[Cu2(H-3py-trz-ia)2(H2O)3] (12Cu), which are obtained under similar reaction conditions. The porosity of the series of cubic MOFs with twf-d topology reaches up to 66%. While the diameters of the spherical pores remain unaffected, adsorption measurements show that the pore volume can be fine-tuned by the substituents of the triazolyl isophthalate ligand and choice of the respective copper salt, that is, copper sulfate, selenate, or nitrate.
As a basis for the evaluation of hydrogen storage by physisorption, adsorption isotherms of H2 were experimentally determined for several porous materials at 77 K and 298 K at pressures up to 15 MPa. Activated carbons and MOFs were studied as the most promising materials for this purpose. A noble focus was given on how to determine whether a material is feasible for hydrogen storage or not, dealing with an assessment method and the pitfalls and problems of determining the viability. For a quantitative evaluation of the feasibility of sorptive hydrogen storage in a general analysis, it is suggested to compare the stored amount in a theoretical tank filled with adsorbents to the amount of hydrogen stored in the same tank without adsorbents. According to our results, an “ideal” sorbent for hydrogen storage at 77 K is calculated to exhibit a specific surface area of >2580 m2 g−1 and a micropore volume of >1.58 cm3 g−1.
Pure gas adsorption isotherms of CH4 and N2 and their binary mixtures were measured at 273 K, 298 K and 323 K and up to 2 MPa on two different microporous metal–organic frameworks (MOFs), i.e. the commercially available Basolite® A100 and the recently reported copper-based triazolyl benzoate MOF 3∞[Cu(Me-4py-trz-ia)] (1). The Tòth isotherm model and the vacancy solution model were used to describe the experimentally determined isotherms and proved to be well suited for this purpose. While 1 shows a more homogeneous surface with a nearly constant isosteric heat of adsorption of 18–18.5 kJ mol−1 for CH4 and 12–15 kJ mol−1 for N2, the isosteric heat of adsorption at zero coverage for Basolite® A100 is 19 kJ mol−1 for CH4 and 16.2 kJ mol−1 for N2, decreasing significantly with increasing loading. Binary adsorption isotherms were measured gravimetrically to determine the total adsorbed mass of CH4 and N2. The van Ness method was successfully applied to calculate partial loadings from gravimetrically measured binary adsorption isotherms. Further studies by volumetric–chromatographic experiments support the good correlation between experimental data and predictions by the vacancy solution model (VSM-Wilson) and the ideal adsorbed solution theory (IAST) from pure gas isotherms. The experimental selectivities were determined to be αCH4/N2 = 4.0–5.0 for 1, slightly higher than for Basolite® A100 with αCH4/N2 = 3.4–4.5. These values are in good agreement with predictions for ideal selectivities based on Henry's law constants. From the experimental selectivities the potential of both MOFs in gas separation of CH4 from N2 can be derived.
The newly synthesized Zn4O-based MOF 3∞[Zn4(μ4-O){(Metrz-pba)2mPh}3]·8 DMF (1·8 DMF) of rare tungsten carbide (acs) topology exhibits a porosity of 43% and remarkably high thermal stability up to 430 °C. Single crystal X-ray structure analyses could be performed using as-synthesized as well as desolvated crystals. Besides the solvothermal synthesis of single crystals a scalable synthesis of microcrystalline material of the MOF is reported. Combined TG-MS and solid state NMR measurements reveal the presence of mobile DMF molecules in the pore system of the framework. Adsorption measurements confirm that the pore structure is fully accessible for nitrogen molecules at 77 K. The adsorptive pore volume of 0.41 cm3 g−1 correlates well with the pore volume of 0.43 cm3 g−1 estimated from the single crystal structure.
The formation and analysis of ten microporous triazolyl isophthalate based MOFs, including nine isomorphous and one isostructural compound is presented. The compounds 1 M – 3 M with the general formula [ M ( R 1 - R 2 - trz - ia ) ] ∞ 3 ·x H 2 O (M 2+ = Co 2+ , Cu 2+ , Zn 2+ , Cd 2+ ; R 1 = H, Me; R 2 = 2py, 2pym, prz (2py = 2-pyridinyle; 2pym = 2-pyrimidinyle; prz = pyrazinyle)) crystallize with rtl topology. They are available as single crystals and also easily accessible in a multi-gram scale via refluxing the metal salts and the protonated ligands in a solvent. Their isomorphous structures facilitate the synthesis of heteronuclear MOFs; in case of 2 M , Co 2+ ions could be gradually substituted by Cu 2+ ions. The Co 2+ :Cu 2+ ratios were determined by ICP-OES spectroscopy, the distribution of Co 2+ and Cu 2+ in the crystalline samples are investigated by SEM-EDX analysis leading to the conclusions that Cu 2+ is more favorably incorporated into the framework compared to Co 2+ and, moreover, that the distribution of the two metal ions between the crystals and within the crystals is inhomogeneous if the crystals were grown slowly. The various compositions of the heteronuclear materials lead to different colors and the sorption properties for CO 2 and N 2 are dependent on the integrated metal ions.
Two closely related series of paddle-wheel-based triazolyl isophthalate MOFs are presented. Thermal and CO2 adsorption studies reveal network flexibility induced by alkyl substituents of the linker. By choice of the substituent, the pore volumes and pore diameters can be adjusted. Fine-tuning of the gate opening pressure and the hysteresis shape is possible by modulating the substitution pattern and by choice of the metal ion.
A series of isostructural 3D coordination polymers (3)∞[M(tdc)(bpy)] (M(2+) = Zn(2+), Cd(2+), Co(2+), Fe(2+); tdc(2-) = 2,5-thiophenedicarboxylate; bpy = 4,4'-bipyridine) was synthesized and characterized by X-ray diffraction, thermal analysis, and gas adsorption measurements. The materials show high thermal stability up to approximately 400 °C and a solvent induced phase transition. Single crystal X-ray structure determination was successfully performed for all compounds after the phase transition. In the zinc-based coordination polymer, various amounts of a second type of metal ions such as Co(2+) or Fe(2+) could be incorporated. Furthermore, the catalytic behavior of the homo- and heteronuclear 3D coordination polymers in an oxidation model reaction was investigated.
Pure component sorption isotherms of n-butane, isobutane, 1-butene and isobutene on the metal–organic framework (MOF) 3∞[Cu4(μ4-O)(μ2-OH)2(Me2trz-pba)4] at various temperatures between 283 K and 343 K and pressures up to 300 kPa are presented. The isotherms show a stepwise pore filling which is typical for structurally flexible materials with broad adsorption–desorption hysteresis loops. Gate opening pressures in their endemic characteristic depend on the used hydrocarbon gases. From all investigated gases only the isotherms of 1-butene present a second step at a relative pressure above p/p0 = 0.55. As a consequence, only 1-butene can fully open the framework resulting in a pore volume of 0.54 cm3 g−1. This result is in good agreement with the value of 0.59 cm3 g−1 calculated based on single crystal structure data. The isosteric heat of adsorption was calculated from the experimental isotherms for all C4-isomers. At low loadings the isosteric heat is in a narrow region between 41 and 49 kJ mol−1. Moreover, in situ XRD measurements at different relative hydrocarbon pressures were performed at 298 K for the C4-isomers. The differences in the pressure-depending powder diffraction patterns indicate phase transitions as a result of adsorption. Similar diffraction patterns were observed for all C4-hydrocarbons, except 1-butene, where the second step at higher relative pressure (p/p0 > 0.55) is accompanied by an additional phase transition. This powder pattern resembles that of the as-synthesized MOF material containing solvent molecules in the pore system. The resulting structural changes of the material during guest and pressure induced external stimuli are evidenced by the new coupled XRD adsorption equipment.
Uptakes of 9.2 mmol g−1 (40.5 wt %) for CO2 at 273 K/0.1 MPa and 15.23 mmol g−1 (3.07 wt %) for H2 at 77 K/0.1 MPa are among the highest reported for metal–organic frameworks (MOFs) and are found for a novel, highly microporous copper‐based MOF (see picture; Cu turquoise, O red, N blue). Thermal analyses show a stability of the flexible framework up to 250 °C.
Metal–organic frameworks (MOFs) as highly porous materials have gained increasing interest because of their distinct adsorption properties.1–3 They exhibit a high potential for applications in gas separation and storage,4 as sensors5 as well as in heterogeneous catalysis.6 In the last few years, the H2 storage capacity of MOFs has been considerably increased. Mesoporous MOFs show high adsorption capacities for CH4, CO2, and H2 at high pressures.2, 3, 7–10 To increase the uptake of H2 and CO2 by physisorption at ambient pressure, adsorbents with small micropores as well as high specific surface areas and micropore volumes are required.11, 12 Such microporous materials seem to be more appropriate for gas‐mixture separation by physisorption than mesoporous materials. For gas separation in MOFs the interactions between the fluid adsorptive and “open metal sites” (coordinatively unsaturated binding sites) or the ligands are regarded as important.13 Industrial processes, such as natural‐gas purification or biogas upgrading, can be improved with those materials during a vapor‐pressure swing adsorption cycle (VPSA cycle) or a temperature swing adsorption cycle (TSA cycle).14 The microporous MOF series CPO‐27‐M (M=Mg, Co, Ni, Zn), for example, shows very high CO2 uptakes at low pressures (<0.1 MPa).15, 16 Concerning H2 adsorption, the microporous MOF PCN‐12 offers with 3.05 wt % the highest uptake at ambient pressure and 77 K reported to date.17
Herein, we present a novel microporous copper‐based MOF equation image[Cu(Me‐4py‐trz‐ia)] (1; Me‐4py‐trz‐ia2−=5‐(3‐methyl‐5‐(pyridin‐4‐yl)‐4H‐1,2,4‐triazol‐4‐yl)isophthalate) with extraordinarily high CO2 and H2 uptakes at ambient pressure, the H2 uptake being similar to that in PCN‐12. The ligand Me‐4py‐trz‐ia2−, which can be obtained from cheap starting materials by a three‐step synthesis in good yield, combines carboxylate, triazole, and pyridine functions and is adopted from a recently presented series of linkers,18 for which up to now only a few coordination polymers are known.