Refine
Document Type
Language
- English (5)
Has Fulltext
- yes (5)
Is part of the Bibliography
- yes (5)
Keywords
- Blockchain (2)
- IIoT (2)
- Scalability (2)
- blockchain (2)
- Blockchain-to-Blockchain communication (1)
- Blockchains (1)
- Cloud computing (1)
- Cloud storage (1)
- Deep learning (1)
- Heuristic algorithms (1)
Institute
Open Access
- Gold (5)
- Open Access (5)
The increase of the Internet of Things (IoT) calls for secure solutions for industrial applications. The security of IoT can be potentially improved by blockchain. However, blockchain technology suffers scalability issues which hinders integration with IoT. Solutions to blockchain’s scalability issues, such as minimizing the computational complexity of consensus algorithms or blockchain storage requirements, have received attention. However, to realize the full potential of blockchain in IoT, the inefficiencies of its inter-peer communication must also be addressed. For example, blockchain uses a flooding technique to share blocks, resulting in duplicates and inefficient bandwidth usage. Moreover, blockchain peers use a random neighbor selection (RNS) technique to decide on other peers with whom to exchange blockchain data. As a result, the peer-to-peer (P2P) topology formation limits the effective achievable throughput. This paper provides a survey on the state-of-the-art network structures and communication mechanisms used in blockchain and establishes the need for network-based optimization. Additionally, it discusses the blockchain architecture and its layers categorizes existing literature into the layers and provides a survey on the state-of-the-art optimization frameworks, analyzing their effectiveness and ability to scale. Finally, this paper presents recommendations for future work.
Blockchain interoperability: the state of heterogenous blockchain-to-blockchain communication
(2023)
Blockchain technology has been increasingly adopted over the past few years since the introduction of Bitcoin, with several blockchain architectures and solutions being proposed. Most proposed solutions have been developed in isolation, without a standard protocol or cryptographic structure to work with. This has led to the problem of interoperability, where solutions running on different blockchain platforms are unable to communicate, limiting the scope of use. With blockchains being adopted in a variety of fields such as the Internet of Things, it is expected that the problem of interoperability if not addressed quickly, will stifle technology advancement. This paper presents the current state of interoperability solutions proposed for heterogenous blockchain systems. A look is taken at interoperability solutions, not only for cryptocurrencies, but also for general data-based use cases. Current open issues in heterogenous blockchain interoperability are presented. Additionally, some possible research directions are presented to enhance and to extend the existing blockchain interoperability solutions. It was discovered that though there are a number of proposed solutions in literature, few have seen real-world implementation. The lack of blockchain-specific standards has slowed the progress of interoperability. It was also realized that most of the proposed solutions are developed targeting cryptocurrency-based applications.
An Overview of Technologies for Improving Storage Efficiency in Blockchain-Based IIoT Applications
(2022)
Since the inception of blockchain-based cryptocurrencies, researchers have been fascinated with the idea of integrating blockchain technology into other fields, such as health and manufacturing. Despite the benefits of blockchain, which include immutability, transparency, and traceability, certain issues that limit its integration with IIoT still linger. One of these prominent problems is the storage inefficiency of the blockchain. Due to the append-only nature of the blockchain, the growth of the blockchain ledger inevitably leads to high storage requirements for blockchain peers. This poses a challenge for its integration with the IIoT, where high volumes of data are generated at a relatively faster rate than in applications such as financial systems. Therefore, there is a need for blockchain architectures that deal effectively with the rapid growth of the blockchain ledger. This paper discusses the problem of storage inefficiency in existing blockchain systems, how this affects their scalability, and the challenges that this poses to their integration with IIoT. This paper explores existing solutions for improving the storage efficiency of blockchain–IIoT systems, classifying these proposed solutions according to their approaches and providing insight into their effectiveness through a detailed comparative analysis and examination of their long-term sustainability. Potential directions for future research on the enhancement of storage efficiency in blockchain–IIoT systems are also discussed.
The integration of Internet of Things devices onto the Blockchain implies an increase in the transactions that occur on the Blockchain, thus increasing the storage requirements.
A solution approach is to leverage cloud resources for storing blocks within the chain. The paper, therefore, proposes two solutions to this problem. The first being an improved hybrid architecture design which uses containerization to create a side chain on a fog node for the devices connected to it and an Advanced Time‑variant Multi‑objective Particle Swarm Optimization Algorithm (AT‑MOPSO) for determining the optimal number of blocks that should be transferred to the cloud for storage. This algorithm uses time‑variant weights for the velocity of the particle swarm optimization and the non‑dominated sorting and mutation schemes from NSGA‑III. The proposed algorithm was compared with results from the original MOPSO algorithm, the Strength Pareto Evolutionary Algorithm (SPEA‑II), and the Pareto Envelope‑based Selection Algorithm with region‑based selection (PESA‑II), and NSGA‑III. The proposed AT‑MOPSO showed better results than the aforementioned MOPSO algorithms in cloud storage cost and query probability optimization. Importantly, AT‑MOPSO achieved 52% energy efficiency compared to NSGA‑III.
To show how this algorithm can be applied to a real‑world Blockchain system, the BISS industrial Blockchain architecture was adapted and modified to show how the AT‑MOPSO can be used with existing Blockchain systems and the benefits it provides.
Blockchain-IIoT integration into industrial processes promises greater security, transparency, and traceability. However, this advancement faces significant storage and scalability issues with existing blockchain technologies. Each peer in the blockchain network maintains a full copy of the ledger which is updated through consensus. This full replication approach places a burden on the storage space of the peers and would quickly outstrip the storage capacity of resource-constrained IIoT devices. Various solutions utilizing compression, summarization or different storage schemes have been proposed in literature. The use of cloud resources for blockchain storage has been extensively studied in recent years. Nonetheless, block selection remains a substantial challenge associated with cloud resources and blockchain integration. This paper proposes a deep reinforcement learning (DRL) approach as an alternative to solving the block selection problem, which involves identifying the blocks to be transferred to the cloud. We propose a DRL approach to solve our problem by converting the multi-objective optimization of block selection into a Markov decision process (MDP). We design a simulated blockchain environment for training and testing our proposed DRL approach. We utilize two DRL algorithms, Advantage Actor-Critic (A2C), and Proximal Policy Optimization (PPO) to solve the block selection problem and analyze their performance gains. PPO and A2C achieve 47.8% and 42.9% storage reduction on the blockchain peer compared to the full replication approach of conventional blockchain systems. The slowest DRL algorithm, A2C, achieves a run-time 7.2 times shorter than the benchmark evolutionary algorithms used in earlier works, which validates the gains introduced by the DRL algorithms. The simulation results further show that our DRL algorithms provide an adaptive and dynamic solution to the time-sensitive blockchain-IIoT environment.