Refine
Document Type
Conference Type
- Konferenz-Abstract (1)
- Konferenzartikel (1)
Language
- English (4)
Has Fulltext
- no (4)
Is part of the Bibliography
- yes (4)
Keywords
- Aufladung (1)
- Lithium-Ionen-Akkumulator (1)
- Messung (1)
- Wasser (1)
Institute
Open Access
- Open Access (2)
- Closed Access (1)
Efficient, low-cost, secure and reliable communication solutions are a major stepping stone for smart metering and smart grid applications. This especially holds true for the so called primary communication or local metrological network (LMN) between a local meter or actuator and a data collector or gateway, where the highest requirements with regard to cost, bandwidth, and energy efficiency have to be taken into consideration. Multiple developments and field tests are going on in this field, however, energy autarkic devices are hardly found, yet. This contribution describes the development of an automatic water meter reading (AWMR) technology based on Wireless M-Bus to provide water utility companies with an automatic remote water meter reading solution. It addresses the special needs of home utilities by providing a remote metering solution independent from the electricity infrastructure, both in terms of data communication and in terms of power supply. For this project, a cost efficient integrated energy harvesting system powered by the available water flow was developed, to enable operation independently of the mains grid, and eliminate the need for battery replacement for near-zero maintenance costs.
Lithium-ion pouch cells with lithium titanate (Li4Ti5O12, LTO) anode and lithium nickel cobalt aluminum oxide (LiNi0.8Co0.15Al0.05O2, NCA) cathode were investigated experimentally with respect to their electrical (0.1C…4C), thermal (5 °C…50 °C) and long-time cycling behavior. The 16 Ah cell exhibits an asymmetric charge/discharge behavior which leads to a strong capacity-rate effect, as well as a significantly temperature-dependent capacity (0.37 Ah ∙ K−1) which expresses as additional high-temperature feature in the differential voltage plot. The cell was cycled for 10,000 cycles inbetween the nominal voltage limits (1.7–2.7 V) with a symmetric 4C constant-current charge/discharge protocol, corresponding to approx. 3400 equivalent full cycles. A small (0.192 mΩ/1000 cycles) but continuous increase of internal resistance was observed. Using electrochemical impedance spectroscopy (EIS), this could be identified to be caused by the NCA cathode, while the LTO anode showed only minor changes during cycling. The temperature-corrected capacity during 4C cycling exhibited a decrease of 1.28%/1000 cycles. The 1C discharge capacity faded by only 4.0% for CC discharge and 2.3% for CCCV discharge after 10,000 cycles. The cell thus exhibits very good internal-resistance stability and excellent capacity retention even under harsh (4C continuous) cycling, demonstrating the excellent stability of LTO as anode material.
Nickel cobalt aluminum oxide (NCA) based lithium-ion battery electrodes exhibit a distinct asymmetry in discharge/charge behavior towards high bulk stoichiometry (low state of charge). We show that basic electrochemical relationships, that is, the Nernst equation and the Butler-Volmer equation, are able to reproduce this behavior when a two-step reaction mechanism is assumed. The two-step mechanism consists of (1) lithium-ion adsorption from the electrolyte onto the active material particle surface under electron transfer, and (2) intercalation of surface-adsorbed lithium atoms into the bulk material. The asymmetry of experimental half-cell data of an NCA electrode cycled at 0.1 C-rate can be quantitatively reproduced with this simple model. The model parameters show two alternative solutions, predicting either a saturated (highly-covered) or a depleted surface for high bulk lithiation.