Refine
Document Type
- Article (reviewed) (10)
- Conference Proceeding (1)
Conference Type
- Konferenzartikel (1)
Language
- English (11)
Is part of the Bibliography
- yes (11)
Institute
- Fakultät Elektrotechnik, Medizintechnik und Informatik (EMI) (ab 04/2019) (9)
- Fakultät Elektrotechnik und Informationstechnik (E+I) (bis 03/2019) (1)
- Fakultät Maschinenbau und Verfahrenstechnik (M+V) (1)
- INES - Institut für nachhaltige Energiesysteme (1)
- ivESK - Institut für verlässliche Embedded Systems und Kommunikationselektronik (1)
Open Access
- Open Access (6)
- Closed Access (4)
- Closed (1)
- Gold (1)
Hybrid low-voltage physical unclonable function based on inkjet-printed metal-oxide transistors
(2020)
Modern society is striving for digital connectivity that demands information security. As an emerging technology, printed electronics is a key enabler for novel device types with free form factors, customizability, and the potential for large-area fabrication while being seamlessly integrated into our everyday environment. At present, information security is mainly based on software algorithms that use pseudo random numbers. In this regard, hardware-intrinsic security primitives, such as physical unclonable functions, are very promising to provide inherent security features comparable to biometrical data. Device-specific, random intrinsic variations are exploited to generate unique secure identifiers. Here, we introduce a hybrid physical unclonable function, combining silicon and printed electronics technologies, based on metal oxide thin film devices. Our system exploits the inherent randomness of printed materials due to surface roughness, film morphology and the resulting electrical characteristics. The security primitive provides high intrinsic variation, is non-volatile, scalable and exhibits nearly ideal uniqueness.
Many different methods, such as screen printing, gravure, flexography, inkjet etc., have been employed to print electronic devices. Depending on the type and performance of the devices, processing is done at low or high temperature using precursor- or particle-based inks. As a result of the processing details, devices can be fabricated on flexible or non-flexible substrates, depending on their temperature stability. Furthermore, in order to reduce the operating voltage, printed devices rely on high-capacitance electrolytes rather than on dielectrics. The printing resolution and speed are two of the major challenging parameters for printed electronics. High-resolution printing produces small-size printed devices and high-integration densities with minimum materials consumption. However, most printing methods have resolutions between 20 and 50 μm. Printing resolutions close to 1 μm have also been achieved with optimized process conditions and better printing technology.
The final physical dimensions of the devices pose severe limitations on their performance. For example, the channel lengths being of this dimension affect the operating frequency of the thin-film transistors (TFTs), which is inversely proportional to the square of channel length. Consequently, short channels are favorable not only for high-frequency applications but also for high-density integration. The need to reduce this dimension to substantially smaller sizes than those possible with today’s printers can be fulfilled either by developing alternative printing or stamping techniques, or alternative transistor geometries. The development of a polymer pen lithography technique allows scaling up parallel printing of a large number of devices in one step, including the successive printing of different materials. The introduction of an alternative transistor geometry, namely the vertical Field Effect Transistor (vFET), is based on the idea to use the film thickness as the channel length, instead of the lateral dimensions of the printed structure, thus reducing the channel length by orders of magnitude. The improvements in printing technologies and the possibilities offered by nanotechnological approaches can result in unprecedented opportunities for the Internet of Things (IoT) and many other applications. The vision of printing functional materials, and not only colors as in conventional paper printing, is attractive to many researchers and industries because of the added opportunities when using flexible substrates such as polymers and textiles. Additionally, the reduction of costs opens new markets. The range of processing techniques covers laterally-structured and large-area printing technologies, thermal, laser and UV-annealing, as well as bonding techniques, etc. Materials, such as conducting, semiconducting, dielectric and sensing materials, rigid and flexible substrates, protective coating, organic, inorganic and polymeric substances, energy conversion and energy storage materials constitute an enormous challenge in their integration into complex devices.
In this report, we have studied field-effect transistors (FETs) using low-density alumina for electrolytic gating. Device layers have been prepared starting from the structured ITO glasses by printing the In 2 O 3 channels, low-temperature atomic layer deposition (ALD) of alumina (Al 2 O 3 ), and printing graphene top gates. The transistor performance could be deliberately changed by alternating the ambient humidity; furthermore, ID,ON/ID,OFF-ratios of up to seven orders of magnitude and threshold voltages between 0.66 and 0.43 V, decreasing with an increasing relative humidity between 40% and 90%, could be achieved. In contrast to the common usage of Al 2 O 3 as the dielectric in the FETs, our devices show electrolyte-typegating behavior. This is a result from the formation of protons on the Al 2 O 3 surfaces at higher humidities. Due to the very high local capacitances of the Helmholtz double layers at the channel surfaces, the operation voltage can be as low as 1 V. At low humidities (≤30%), the solid electrolyte dries out and the performance breaks down; however, it can fully reversibly be regained upon a humidity increase. Using ALD-derived alumina as solid electrolyte gating material, thus, allows low-voltage operation and provides a chemically stable gating material while maintaining low process temperatures. However, it has proven to be highly humidity-dependent in its performance.
Fully Printed Inverters using Metal‐Oxide Semiconductor and Graphene Passives on Flexible Substrates
(2020)
Printed and flexible metal‐oxide transistor technology has recently demonstrated great promise due to its high performance and robust mechanical stability. Herein, fully printed inverter structures using electrolyte‐gated oxide transistors on a flexible polyimide (PI) substrate are discussed in detail. Conductive graphene ink is printed as the passive structures and interconnects. The additive printed transistors on PI substrates show an on/off ratio of 106 and show mobilities similar to the state‐of‐the‐art printed transistors on rigid substrates. Printed meander structures of graphene are used as pull‐up resistances in a transistor–resistor logic to create fully printed inverters. The printed and flexible inverters show a signal gain of 3.5 and a propagation delay of 30 ms. These printed inverters are able to withstand a tensile strain of 1.5% following more than 200 cycles of mechanical bending. The stability of the electrical direct current (DC) properties has been observed over a period of 5 weeks. These oxide transistor‐based fully printed inverters are relevant for digital printing methods which could be implemented into roll‐to‐roll processes.
In this study, a facile method to fabricate a cohesive ion‐gel based gate insulator for electrolyte‐gated transistors is introduced. The adhesive and flexible ion‐gel can be laminated easily on the semiconducting channel and electrode manually by hand. The ion‐gel is synthesized by a straightforward technique without complex procedures and shows a remarkable ionic conductivity of 4.8 mS cm−1 at room temperature. When used as a gate insulator in electrolyte‐gated transistors (EGTs), an on/off current ratio of 2.24×104 and a subthreshold swing of 117 mV dec−1 can be achieved. This performance is roughly equivalent to that of ink drop‐casted ion‐gels in electrolyte‐gated transistors, indicating that the film‐attachment method might represent a valuable alternative to ink drop‐casting for the fabrication of gate insulators.
Electrolyte-gated transistors (EGTs) represent an interesting alternative to conventional dielectric-gating to reduce the required high supply voltage for printed electronic applications. Here, a type of ink-jet printable ion-gel is introduced and optimized to fabricate a chemically crosslinked ion-gel by self-assembled gelation, without additional crosslinking processes, e.g., UV-curing. For the self-assembled gelation, poly(vinyl alcohol) and poly(ethylene-alt-maleic anhydride) are used as the polymer backbone and chemical crosslinker, respectively, and 1-ethyl-3-methylimidazolium trifluoromethanesulfonate ([EMIM][OTf]) is utilized as an ionic species to ensure ionic conductivity. The as-synthesized ion-gel exhibits an ionic conductivity of ≈5 mS cm−1 and an effective capacitance of 5.4 µF cm−2 at 1 Hz. The ion-gel is successfully employed in EGTs with an indium oxide (In2O3) channel, which shows on/off-ratios of up to 1.3 × 106 and a subthreshold swing of 80.62 mV dec−1.
Printed systems spark immense interest in industry, and for several parts such as solar cells or radio frequency identification antennas, printed products are already available on the market. This has led to intense research; however, printed field-effect transistors (FETs) and logics derived thereof still have not been sufficiently developed to be adapted by industry. Among others, one of the reasons for this is the lack of control of the threshold voltage during production. In this work, we show an approach to adjust the threshold voltage (Vth) in printed electrolyte-gated FETs (EGFETs) with high accuracy by doping indium-oxide semiconducting channels with chromium. Despite high doping concentrations achieved by a wet chemical process during precursor ink preparation, good on/off-ratios of more than five orders of magnitude could be demonstrated. The synthesis process is simple, inexpensive, and easily scalable and leads to depletion-mode EGFETs, which are fully functional at operation potentials below 2 V and allows us to increase Vth by approximately 0.5 V.
Development of Fully Printed Oxide Field-Effect Transistors using Graphene Passive Structures
(2019)
During the past decade to the present time, the topic of printed electronics has gained a lot of attention for their potential use in a number of practical applications, including biosensors, photovoltaic devices, RFIDs, flexible displays, large-area circuits, and so on. To fully realize printed electronic components and devices, effective techniques for the printing of passive structures and electrically and chemically compatible materials in the printed devices need to be developed first. The opportunity of using electrically conducting graphene inks will enable the integration of passive structures into active devices, as for example, printed electrolyte-gated transistors (EGTs). Accordingly, in this study, we present the parametric results obtained on fully printed electrolyte-gated transistors having graphene as the passive electrodes, an inorganic oxide semiconductor as the active channel, and a composite solid polymer electrolyte (CSPE) as the gate insulating material. This configuration offers high chemical and electrical stability while at the same time allowing EGT operation at low potentials, implying the distinct advantage of operation at low input voltages. The printed in-plane EGTs we developed exhibit excellent performance with device mobility up to 16 cm2 V–1 s–1, an ION/IOFF ratio of 105, and a subthreshold slope of 120 mV dec–1.
In the domain of printed electronics (PE), field-effect transistors (FETs) with an oxide semiconductor channel are very promising. In particular, the use of high gate-capacitance of the composite solid polymer electrolytes (CSPEs) as a gate-insulator ensures extremely low voltage requirements. Besides high gate capacitance, such CSPEs are proven to be easily printable, stable in air over wide temperature ranges, and possess high ion conductivity. These CSPEs can be sensitive to moisture, especially for high surface-to-volume ratio printed thin films. In this paper, we provide a comprehensive experimental study on the effect of humidity on CSPE-gated single transistors. At the circuit level, the performance of ring oscillators (ROs) has been compared for various humidity conditions. The experimental results of the electrolyte-gated FETs (EGFETs) demonstrate rather comparable currents between 30%-90% humidity levels. However, the shifted transistor parameters lead to a significant performance change of the RO frequency behavior. The study in this paper shows the need of an impermeable encapsulation for the CSPE-gated FETs to ensure identical performance at all humidity conditions.
Silicon (Si) has turned out to be a promising active material for next‐generation lithium‐ion battery anodes. Nevertheless, the issues known from Si as electrode material (pulverization effects, volume change etc.) are impeding the development of Si anodes to reach market maturity. In this study, we are investigating a possible application of Si anodes in low‐power printed electronic applications. Tailored Si inks are produced and the impact of carbon coating on the printability and their electrochemical behavior as printed Si anodes is investigated. The printed Si anodes contain active material loadings that are practical for powering printed electronic devices, like electrolyte gated transistors, and are able to show high capacity retentions. A capacity of 1754 mAh/gSi is achieved for a printed Si anode after 100 cycles. Additionally, the direct applicability of the printed Si anodes is shown by successfully powering an ink‐jet printed transistor.
Oxide semiconductors are highly promising candidates for the most awaited, next-generation electronics, namely, printed electronics. As a fabrication route for the solution-processed/printed oxide semiconductors, photonic curing is becoming increasingly popular, as compared to the conventional thermal curing method; the former offers numerous advantages over the latter, such as low process temperatures and short exposure time and thereby, high throughput compatibility. Here, using dissimilar photonic curing concepts (UV–visible light and UV-laser), we demonstrate facile fabrication of high performance In2O3 field-effect transistors (FETs). Beside the processing related issues (temperature, time etc.), the other known limitation of oxide electronics is the lack of high performance p-type semiconductors, which can be bypassed using unipolar logics from high mobility n-type semiconductors alone. Interestingly, here we have found that our chosen distinct photonic curing methods can offer a large variation in threshold voltage, when they are fabricated from the same precursor ink. Consequently, both depletion and enhancement-mode devices have been achieved which can be used as the pull-up and pull-down transistors in unipolar inverters. The present device fabrication recipe demonstrates fast processing of low operation voltage, high performance FETs with large threshold voltage tunability.