Refine
Year of publication
- 2019 (2)
Document Type
Language
- English (2)
Has Fulltext
- no (2)
Is part of the Bibliography
- yes (2)
Keywords
Open Access
- Closed Access (2)
Amongst all the major hazard aspects for the health of people in big conglomerates is the increase of the particulate matter concentration. Traditional systems for particulate matter (PM) monitoring have a great number of drawbacks but the main issues are economical and are related to the installation costs and never ending periodical maintenance expenses. After all there are installations of such systems but their number is limited and having in mind the growth of population, cities and industry areas, there is even a bigger need for more information on air quality because PM changes non-linearly, has a wide range and different sources. In this paper, we propose an approach, based on low-cost sensor nodes, for real-time measuring and obtaining information about the PM concentration. The adoption of that approach allows for a detailed study of the intensities of pollution and its sources. The system power supply is powered by a PV module. The power supply unit is designed using a model-based design that is a new approach to prototyping power-operated electronic devices with guaranteed performance.
The paper describes a systematic approach for a precise short-time cloud coverage prediction based on an optical system. We present a distinct pre-processing stage that uses a model based clear sky simulation to enhance the cloud segmentation in the images. The images are based on a sky imager system with fish-eye lens optic to cover a maximum area. After a calibration step, the image is rectified to enable linear prediction of cloud movement. In a subsequent step, the clear sky model is estimated on actual high dynamic range images and combined with a threshold based approach to segment clouds from sky. In the final stage, a multi hypothesis linear tracking framework estimates cloud movement, velocity and possible coverage of a given photovoltaic power station. We employ a Kalman filter framework that efficiently operates on the rectified images. The evaluation on real world data suggests high coverage prediction accuracy above 75%.