Refine
Document Type
Has Fulltext
- no (4)
Is part of the Bibliography
- yes (4)
Keywords
- Kohlenstoff (2)
- Molekularsieb (2)
- Adsorption (1)
- Gasbehälter (1)
- Gasgemisch (1)
- Kinetik (1)
- Luftzerlegung (1)
- Metallorganisches Netzwerk (1)
- Methan (1)
- Oberflächenbehandlung (1)
Institute
Open Access
- Closed Access (4)
Pure component sorption isotherms of n-butane, isobutane, 1-butene and isobutene on the metal–organic framework (MOF) 3∞[Cu4(μ4-O)(μ2-OH)2(Me2trz-pba)4] at various temperatures between 283 K and 343 K and pressures up to 300 kPa are presented. The isotherms show a stepwise pore filling which is typical for structurally flexible materials with broad adsorption–desorption hysteresis loops. Gate opening pressures in their endemic characteristic depend on the used hydrocarbon gases. From all investigated gases only the isotherms of 1-butene present a second step at a relative pressure above p/p0 = 0.55. As a consequence, only 1-butene can fully open the framework resulting in a pore volume of 0.54 cm3 g−1. This result is in good agreement with the value of 0.59 cm3 g−1 calculated based on single crystal structure data. The isosteric heat of adsorption was calculated from the experimental isotherms for all C4-isomers. At low loadings the isosteric heat is in a narrow region between 41 and 49 kJ mol−1. Moreover, in situ XRD measurements at different relative hydrocarbon pressures were performed at 298 K for the C4-isomers. The differences in the pressure-depending powder diffraction patterns indicate phase transitions as a result of adsorption. Similar diffraction patterns were observed for all C4-hydrocarbons, except 1-butene, where the second step at higher relative pressure (p/p0 > 0.55) is accompanied by an additional phase transition. This powder pattern resembles that of the as-synthesized MOF material containing solvent molecules in the pore system. The resulting structural changes of the material during guest and pressure induced external stimuli are evidenced by the new coupled XRD adsorption equipment.
We tested the MOF framework Cu-BTC for natural gas (NG) storage. Adsorption isotherms of C1–C4 alkanes were simulated applying the Grand Canonical ensemble and the Monte Carlo algorithm in a classical molecular mechanics approach. Experimental monocomponent isotherm of the alkanes was used to validate the force field. We performed multicomponent adsorptions calculations for three different quaternary mixtures of C1–C4 alkanes, matching typical NG streams composition, and predicted theoretical storage capacities, efficiency and accumulation of the NG within that composition. Despite being one of the frameworks with greatest storage capacity of methane, we found that Cu-BTC presented great sensitivity to the variation of the heavier alkanes in NG composition. When we increase the percentage of butane from 0.1% to 0.7% in the mixture, the mass of components retained in the discharge pressure (1 bar) increases from 35 to 60%. We also perform siting and interaction energy investigations and compare the NG storage performance of the Cu-BTC with that of activated carbons. To our knowledge, this is the first study regarding the efficiency of the NG storage in Cu-BTC.