Refine
Document Type
Conference Type
Language
- English (3)
Has Fulltext
- no (3)
Keywords
- antibiotic resistance (1)
- preferential flow (1)
- quinolone (1)
- resistance genes (1)
- sulphonamide (1)
- waste water (1)
- water flow pathways (1)
Institute
Open Access
- Open Access (2)
- Bronze (1)
- Closed (1)
- Gold (1)
Antibiotic resistance genes in soil pose a potential risk for human health. They can enter the soil by irrigation with untreated or insufficiently treated waste water. We hypothesized that water flow paths trigger the formation of antibiotic resistance, since they transport antibiotics, multi-resistant bacteria and free resistance genes through the soil. To test this, we irrigated soil cores once or twice with waste water only, or with waste water added with sulfamethoxazole (SMX) and ciprofloxacin (CIP). The treatments also contained a dye to stain the water flow paths and allowed to sample these separately from unstained bulk soil. The fate of SMX and CIP was assessed by sorption experiments, leachate analyses and the quantification of total and extractable SMX and CIP in soil. The abundance of resistance genes to SMX (sul1 and sul2) and to CIP (qnrB and qnrS) was quantified by qPCR. The sorption of CIP was larger than the dye and SMX. Ciprofloxacin accumulated exclusively in the water flow paths but the resistance genes qnrB and qnrS were not detectable. The SMX concentration in the water flow paths doubled the concentration of the bulk soil, as did the abundance of sul genes, particularly sul1 gene. These results suggest that flow paths do function as hotspots for the accumulation of antibiotics and trigger the formation of resistance genes in soil. Their dissemination also depends on the mobility of the antibiotic, which was much larger for SMX than for CIP.
Irrigation with wastewater releases pharmaceuticals, pathogenic bacteria, and resistance genes, but little is known about the accumulation of these contaminants in the environment when wastewater is applied for decades. We sampled a chronosequence of soils that were variously irrigated with wastewater from zero up to 100 years in the Mezquital Valley, Mexico, and investigated the accumulation of ciprofloxacin, enrofloxacin, sulfamethoxazole, trimethoprim, clarithromycin, carbamazepine, bezafibrate, naproxen, diclofenac, as well as the occurrence of Enterococcus spp., and sul and qnr resistance genes. Total concentrations of ciprofloxacin, sulfamethoxazole, and carbamazepine increased with irrigation duration reaching 95% of their upper limit of 1.4 µg/kg (ciprofloxacin), 4.3 µg/kg (sulfamethoxazole), and 5.4 µg/kg (carbamazepine) in soils irrigated for 19–28 years. Accumulation was soil-type-specific, with largest accumulation rates in Leptosols and no time-trend in Vertisols. Acidic pharmaceuticals (diclofenac, naproxen, bezafibrate) were not retained and thus did not accumulate in soils. We did not detect qnrA genes, but qnrS and qnrB genes were found in two of the irrigated soils. Relative concentrations of sul1 genes in irrigated soils were two orders of magnitude larger (3.15×10−3±0.22×10−3 copies/16S rDNA) than in non-irrigated soils (4.35×10−5±1.00×10−5 copies/16S rDNA), while those of sul2 exceeded the ones in non-irrigated soils still by a factor of 22 (6.61×10–4±0.59×10−4 versus 2.99×10−5±0.26×10−5 copies/16S rDNA). Absolute numbers of sul genes continued to increase with prolonging irrigation together with Enterococcus spp. 23S rDNA and total 16S rDNA contents. Increasing total concentrations of antibiotics in soil are not accompanied by increasing relative abundances of resistance genes. Nevertheless, wastewater irrigation enlarges the absolute concentration of resistance genes in soils due to a long-term increase in total microbial biomass.